
IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 1

Distributed TDMA for Mobile UWB Network
Localization

Yanjun Cao, Student Member, IEEE, Chao Chen, David St-Onge, Member, IEEE, and
Giovanni Beltrame, Senior Member, IEEE

Abstract—Many applications related to the Internet-of-Things,
such as tracking people or objects, robotics, and monitoring
require localization of large networks of devices in dynamic,
GPS-denied environments. Ultra-WideBand (UWB) technology
is a common choice because of its precise ranging capability.
However, allowing access and effective use of the shared UWB
medium with a constantly changing set of devices faces some
particular challenges: high frequency of ranging measurements
by the devices to improve system accuracy; network topology
changes requiring rapid adaptation; and decentralized operation
to avoid single points of failure.

In this paper, we propose a novel Time Division Multiple
Access (TDMA) algorithm that can quickly schedule the use of
the UWB medium by a large network of devices without collisions
in local network neighborhoods and avoiding conflicts with
hidden terminals, all the while maximizing network usage. Using
exclusively the UWB radio network, we realize a decentralized
system for synchronization, dynamic TDMA scheduling, and
precise relative positioning on a multi-hop network. Our system
does not have special nodes (all nodes are equal) and it is
sufficiently scalable for real-world applications. Our method can
be applied to implement device localization services in large
spaces without GPS and complex topologies, like malls, museums,
mines, etc. We demonstrate our method in simulation and on
real hardware in an underground parking lot, showing the
effectiveness of its TDMA schedule for relative localization.

Index Terms—TDMA, multi-hop network, distributed localiza-
tion, Ultra-WideBand, mobile ad-hoc network (MANET)

I. INTRODUCTION

INDOOR localization and tracking have the potential to
unlock a plethora of new concepts and applications for

public space enhancement [1].

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery Grant (No. 2019-05165),
FRQNT ”Stages internationaux - Énergie-Numérique-Aérospatiale” funding
(No. 263380), SSHRC Insight grant ”Observatoires de l’Inaccessible (pendant
ce temps)” (No. 435-2018-1163), and Canada Council for the Arts grant ”Point
d’Origine, Étude No.2 Chambord (No. 1003-19-1138).

M. Cao was with the Department of Computer and Software Engineering,
Polytechnique Montreal, Canada. He is now with Huzhou Institute of Zhejiang
University, Huzhou, China.
E-mail: yanjun.cao@polymtl.ca, yanjundream@outlook.com

Dr. Beltrame is with the Department of Computer and Software Engineer-
ing, Polytechnique Montreal, Canada
E-mail: giovanni.beltrame@polymtl.ca.

M. Chen is with the Institute of Network Engineering, National Chiao Tung
University, Taiwan
E-mail: cchen.cs07g@nctu.edu.tw.

Dr. St-Onge is with the Department of Mechanical Engineering, Ecole de
technologie superieure, Canada
E-mail: david.st-onge@etsmtl.ca.

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The rapid development of hardware and software technol-
ogy needs to address a higher demand for accurate localization
services, such as person tracking, crowdsensing, and device
localization [2]. In particular, a scalable system with few or
no dependencies on fixed infrastructure is highly desirable,
allowing for faster deployment and reducing effort for users.

While many paths have been explored, it is still very chal-
lenging to deploy a scalable system with mobile and dynamic
nodes [3]. Accurate tracking can be acquired with expensive
sensors (e.g. multiple cameras, LiDARs, radars, etc.), but
their cost limits their applicability for the Internet-of-Things
(IoT). Building infrastructure support to provide localization-
based services is the most common approach: satellite-based
GPS or cellular systems (5G, LoRa) are mostly for outdoor
use and can have low localization accuracy depending on
the environment. Camera arrays and radio beacon setups can
provide indoor localization, but can be expensive and labor-
intensive to set up, limiting their scalability.

EM-based localization is usually lower cost and more
suitable for IoT devices. Wifi, Bluetooth, and RFID have
respective techniques for indoor positioning, however with
limited accuracy [2]. Ultra-Wide Band (UWB) is also used for
localization, using ultrashort pulses to achieve very accurate
and high-frequency ranging as well as transmitting data, which
makes it an ideal choice for indoor localization.

Anchor-based UWB localization has been widely commer-
cialized [4], [5]. However, commercial systems mainly use
Time Difference of Arrival (TDOA), a technique which re-
quires nanosecond clock synchronization between anchors [6].
This limits the scalability of the system as a high level of syn-
chronization accuracy is hard to maintain in a distributed sys-
tem. In addition, the positions of agents are usually calculated
by a server in a centralized fashion, requiring an available low-
latency communication infrastructure. To maximize scalability,
we target a distributed system with minimal infrastructure
support.

Two way ranging (TWR) [7] is a more flexible ranging
solution, enabling arbitrary pair of nodes to perform distance
measurements at any time. The key challenge with TWR
is the access control to a shared medium, i.e. the UWB
communication channel. Ranging using TWR takes signifi-
cantly longer than simply broadcasting a message, requiring
a medium access control (MAC) mechanism to coordinate
the measurements across all devices at a given location.
Time Division Multiple Access (TDMA), Frequency Division
Multiple Access (FDMA), and Code Division Multiple Access
(CDMA) are general strategies for MAC in many networks [8].

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 2

TDMA allows several devices to share the UWB channel
by dividing the medium access into different time slots. For
accurate localization, we want to maximize the number of
ranging measurements, therefore requiring high utilization of
the available time slots.

Our requirement of high channel usage for the system
prevents the use of a contention-based TDMA [9] as the
potential of collisions is very high. Another major category of
distributed TDMA algorithms is based on request and response
negotiations [10]. However, these techniques usually require
several iterations to converge, which makes them difficult
to apply in dynamic networks where the topology changes
frequently. In this paper, we propose a novel distributed
TDMA algorithm that allows conflict-free scheduling with
almost full channel usage. In addition, our method supports
multi-hop networks, where slots can be multiplexed and used
by nodes that are two hops apart. Another major advantage
of our method is that scheduling can be obtained and updated
iteratively, making it suitable for dynamic networks of mobile
devices. Without loss of generality, we apply our TDMA
algorithm to a UWB network.

The mobility of devices poses challenges not only for
TDMA scheduling, but also for the localization of nodes in
the network. Cooperative localization can help improve the
localization performance of a large scale network [11]. In our
system, each node cooperates with its neighbors to construct a
local topological map, which is broadcast to recover the global
map of the network, allowing for the localization of a multi-
hop device network. Our localization system has potential
applications in crowdsensing, where privacy-preserving meth-
ods [12], [13] could be applied to avoid sharing localization
data, and in the adaptive control of vehicular networks, where
current software-defined networks rely on the centralized
knowledge of topology and traffic conditions [14], [15].

The constraints of our application scenario (1. absence of
fixed calibrated anchors, 2. large distributed network man-
agement, and 3. dynamic network topology) call for a new
approach to the MAC control of UWB channels: one that
optimizes UWB access to grant high measurement rates that
are necessary for high localization accuracy. Our contributions
can be summarized as:
• a scalable decentralized network management to be used

for relative localization in mobile ad-hoc networks;
• a novel TDMA algorithm that allows fast convergence

and full channel usage;
• a neighborhood topological map construction algorithm

to be used for global cooperative map recovery.

II. RELATED WORK

UWB technology has attracted substantial attention due to
its high ranging accuracy. Beside the centralized usage of
anchor-based systems [16], [17], point-to-point ranging started
receiving more attention [3], [18]–[20]. These results show
the advantage of UWB for multi-agent systems, but due to
the small number of UWB nodes in the experiments, network
usage has not yet been explored. Ridolfi et al. [21] analyzed the
scalability of UWB-based localization and showed the huge

impact of the coordination protocol on scalability. Qin et al. [6]
designed a BLAS system that uses UWB for the localization
of a multi-agent system. They divided the agents into parent
and child groups: the parent agents act as moving anchors and
create a coordinate frame for the system. They proposed a
distributed clock synchronization in parent agents to maintain
a high clock precision. This enables the child group to get the
position by time-of-arrival (TOA) measurements. The biggest
advantage of this system is the number of child agents is
theoretically unlimited because they only passively receive
the pings from the parents. Although the child nodes have no
conflicts, the communication between parent agents still needs
to be coordinated. Qin et al. use round-robin as distributed
TDMA to achieve collision-free broadcasting from parent
agents. However, this solution assumes all the parent agents
are fully connected, which limits the scalability of the system.
Macoir et al. [22] also uses an anchor-based TDOA strategy,
but it is designed for relatively large scale networks. The
authors divided the network into multiple small cells to cover
large areas. Unlike the passive child nodes from [6], Macoir
et al [22] schedule active slots for mobile tags to broadcast
messages and use a server connected with the anchors to
calculate the positions. The server is also responsible for slot
assignment and thereby forming a centralized system.

Zhu and Kia [23] proposed a negotiation-based dynamic
TDMA algorithm across the UWB network, G.M. ter Horst [3]
developed an anarchic TDMA algorithm based on the
DESYNC algorithm [24]. Both methods only consider one-
hop collisions, so that collision can occur for hidden nodes at
neighborhood boundaries.

The most widely used MAC control on UWB is the
IEEE802.15.4-2011 protocol [25], integrated with the De-
cawave 1000 [7] chip, which is the most popular commercial
UWB chip on the market. The protocol uses Carrier Sense
Multiple Access with Collision Avoidance (CSMA-CA) or
slotted ALOHA [9], [26] to avoid collisions. However, these
two strategies are only applicable to lightly loaded networks
that have a small probability of collisions. In our case, we want
to maximize channel usage for accurate localization. To the
best of our knowledge, this work is the first to apply dynamic
TDMA for UWB localization in multi-hop ad-hoc networks
with mobile devices.

Compared to some TDMA techniques available for com-
munication networks, our application has several additional
requirements: 1) the maximization of channel usage to increase
the localization frequency; 2) rapid time slot scheduling to
account for dynamic topologies; 3) decentralization to avoid
the need for fixed infrastructure.

The TDMA slot assignment in a wireless network can be
seen as an extension of the vertex colouring problem in graph
theory, with the additional constraint of needing to avoid
collisions in 2-hop neighborhoods [27]. The problem was
proven to be NP-complete [28], and several heuristic solutions
were proposed [27]–[29] to get the near-optimal results with
full knowledge of the network topology.

When considering a distributed system where nodes only
receive messages from neighbors, some works (FPRP [10],
DRAND [30], DICSA [31], PCP-TDMA [32]) propose

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 3

negotiation-based algorithms to find the smallest frame with
conflict-free scheduling. After scheduling, all nodes in a
network need to agree on the same frame size to execute
the slot schedule with the same frame reference. We believe
that this strategy is not the best strategy for a highly dynamic
network, as it would require fast global consensus of the frame
size across the network. Furthermore, when a node makes a
proposal during negotiation, it has to wait for the feedback of
all neighbors, potentially leading to long convergence times
if the neighborhood size is large or the network topology is
complex. For similar reasons, practical mobile networks use
fixed-length frames such as USAP [33] for military telephone
networks and VeMAC [34] for vehicular ad-hoc networks
(VANETs).

Since the size of the frame should be larger than the
total number of nodes in the network, these protocols may
have several unused time slots. Researchers found a balance
between frame size stability and channel usage by doubling
or halving the frame size, such as in USAP-MA [35] and
Dynamic-TDMA [36]. Cao and Lee proposed VAT-MAC [37],
a VANET with a changing frame size, relying on a roadside
unit (RSU) infrastructure. In our method, we use a fixed frame
size that equals the total number of nodes allowed in the
system. Despite this static allocation, we have high channel
usage since we always allocate all the available time slots to
the neighborhood’s devices.

The overall goal of our system is to localize nodes within
the network. We use least square optimization to find the coor-
dinate of the nodes by carefully selecting reference nodes to do
trilateration [38] and iterative multilateration [39], [40] with
located nodes. However, considering the distributed and dy-
namic characteristics of our network, applying TWR between
all nodes in the network in real-time can be challenging [41],
[42]. Therefore, we propose a two-stage strategy: we create a
local relative localization map and then merge the local maps
to get the whole network spatial information.

III. SYSTEM OVERVIEW

With the goal of accurate localization in a dynamic UWB
ad-hoc network, we developed a fully decentralized system
that does not require any fixed infrastructure. By designing
a novel MAC protocol, nodes can make full use of the
channel to get ranging measurements across the network. Our
system includes four main modules: synchronization (to align
the frame boundaries), distributed TDMA (to get collision-
free slot assignments), relative localization, and global map
merging.

Synchronization and distributed TDMA are related to the
MAC protocol of the UWB network, while relative localiza-
tion and global map merging combine the devices’ ranging
measurements and are executed in the time slots assigned by
the MAC protocol.

Fig. 1 shows the system architecture from the perspective of
a node with ID i. All nodes are identified by a unique ID, are
considered equal in the network, and run the same software.
The overall localization runs in a cycle with n time slots,
where n is the total number of nodes in the network. This

choice is without loss of generality: this number is usually
known for a given application, and not all devices need to be
active or present.

Each node is automatically assigned the slot with the same
ID as the node. At the beginning of each frame, each node
checks its synchronization with the node with the lowest ID
in range, ensuring that all frames start at the same time.

All the time slots in a frame can be divided into: own time
slot, extra time slots, and passive time slots. The purpose of
distributed TDMA is to find conflict-free extra slots to improve
node’s localization capability. Every time a device is in its own
slot (predefined as the ID of the device), the node broadcasts
TDMA scheduling packets. Nodes listen to the network during
passive slots.

Finally, the devices use relative localization to build a topo-
logical map of their neighborhood. Distributed TDMA helps
nodes to gain extra slots, which enables them to do ranging
and broadcast these measurements. Each node constructs the
local map from its own ranging measurements as well as
the measurements received from its neighborhood. Each node
broadcasts its local map and merges the other nodes’ maps
when received, progressively converging to the global map.

Synchronization

Distributed TDMA

1

2

3

6

4

5

7

i

0

E
xt

ra
 S

lo
t

by
 T

D
M

A

Passive Slot: Listen Neib.’s msg

Ranging to neighbour

Broadcast meas.

Local graph recovery

Global graph recovery

Frame
Cycle

O
w

n
sl

ot Broadcast TDMA msg.

Algorithm moduleOwn time slot Passive time slotExtra time slot

Broadcast local graphn

Fig. 1. System architecture of a node. Synchronization is checked at the
beginning of each frame period. Distributed TDMA allows each node to be
assigned with slots for ranging and broadcasting range measurements. Each
node constructs a local node map from its own ranging measurements and
the measurements received from its neighborhood.

IV. FRAME-BASED SYNCHRONIZATION

Synchronization is usually needed for systems with pure
TDMA scheduling [43]: nodes need to have the same clock
to wait for the time of their own slots. Considering that the
network might be large and highly dynamic, it is not easy to
effectively synchronize the entire system. In our case, we let
the nodes synchronize the beginning of each frame instead of
the true clock. We use two techniques to achieve distributed
synchronization:
• Each node broadcasts the time offset to the starting of its

frame;
• Each node listens to the offset of its neighbors and adjusts

its offset using the neighbor with the smallest ID as
reference.

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 4

The data usage used by transmitting an offset is less or
at least not greater than for transmitting the clock. Using a
reference (the lowest ID node in the neighborhood in our case)
can also improve the synchronization speed with respect to a
peer-to-peer gradient time synchronization setup [44].

V. DISTRIBUTED TDMA

As long as all nodes in a neighborhood have the same frame
start reference, the slot ID can be used as an index of the
unique time period for controlling the access to the shared
medium. Nodes also collect information from 2-hop neighbors
to avoid conflicts at the interface of the neighborhood. Many
TDMA algorithms [45], [46] use 2-hop neighborhood infor-
mation to assign unallocated slots: our main contribution is a
strategy to quickly allocate all these free slots with minimal
conflicts in a distributed manner. To describe our algorithm,
we define variables as shown in Table I.

TABLE I
NOTATIONS THROUGH THE PAPER

n the largest ID in the system.

U
the set of node IDs.
U = {u|u ∈ N, 1 ≤ u ≤ n}

Nk
i

the k-hop neighbor set, consisting of the IDs of
nodes exactly at k hops from node i.

aNk
i

the all neighbor set, consisting of the IDs of
nodes at most at k hops from node i.

aNk
i =

k⋃
j=1

Nj
i

sSi
the send slots set, consisting of the IDs of slots
assigned to node i.

fSi

the free slots set, consisting of the IDs of slots
that are not assigned to node i.
fSi = U \ sSi

cSi

the candidate slots set, consisting of the IDs of
slots that are not assigned to any node in aN2

i .
cSi =

⋂
j∈aN2

i

fSj

sNi

the sibling neighbor set, consisting of the IDs
of nodes sharing the same candidate slot sets in
2-hop range of node i.
sNi : {j|cSj = cSi, ∀j ∈ aN2

i , i 6= j}

shdSi

the shared slots set, consisting of the IDs of
shared candidate slots of neighbors of node i
that are within 2 hops but 1) are not in sNi 2)
have cSj that is not a superset of cSi.
shdSi =

⋂
j∈Ω

cSj

Ω : {k|k ∈ (aN2
i \ sNi), cSk 6⊃ cSi}

A. Frame structure

Each frame contains two cycles of communication slots, one
for immediate neighbors, and one for 2-hop neighbors. The
number of slots in each cycle is equal to the maximum number
of nodes allowed in the system. This represents the lower
bound of the frame size if all nodes are to communicate in a
fully connected network [28]. We believe that this constraint is
not critical as our system can assign arbitrarily large numbers
of slots to each device and fully use the available bandwidth,
as well as guaranteeing that all devices get at least one
communication slot.

1 2 3 • • • n-1 n 1 2 3 • • • n-1 n

Frame Structure

Cycle A Cycle B

Slots:

Fig. 2. The frame structure of the system. Each frame includes two cycles of
slots from 1 to n. n is the maximum number of nodes allowed in the system.

As shown in Fig. 2, each frame has a two-cycle structure.
Each cycle has n slots, with n is the maximum number of
nodes that the system can support.

By default in each cycle, node i takes slot i, i.e. the
slot with the same ID (called own slot). This ensures a
lower bound of two slots per frame when all nodes share
the same neighborhood, meaning we have a fully connected
network. When a node moves and leaves some other nodes’
communication range, certain time slots become idle. When
idle slots are detected, the nodes dynamically assign these slots
to improve their update frequency, as described in Section V-C.

The reason why we use two cycles (A and B) in each frame
is to have a stable propagation of information of 2-hop nodes.
Each node broadcasts its own ID, used and potential slots in its
slot of cycle A, and the information of its neighbors in its slot
of cycle B (see Fig. 3). Using this two-cycle broadcasting, each
node acquires the latest 2-hop neighborhood information at
each frame. This information is fed into the distributed TDMA
scheduler for conflict-free scheduling. As the slots schedule for
two cycles are the same, we explain one frame as n slot for
simplicity.

B. Data packet format

We use different packet formats for the own slots in cycle A
and B, as well as for extra slots. For own slots in cycle A the
broadcast packet contains node ID, candidate slots (cS), and
send slots (sS). Every node reached by the broadcast collects
the information in its local memory. For own slots in cycle B,
the packets contain every neighbor’s cS and sS, effectively
propagating 2-hop information across the network.

Self ID: Neib. ID: • • •

Self ID:

Self ID: Ranging meas. Ranging age • • •

Own slot in cycle A

Extra slots

Own slot in cycle B

cS j

cS i sSi

sS jj

i

i

i

i j

Fig. 3. Communication data packet format used in the three types of time
slots in the system.

The extra slots are used for ranging with neighbors. After
the ranging task is completed, each node broadcasts a times-
tamped ranging result. This transmission avoids repeating the
same measurement from two directions and provides global
knowledge of inter-node distance across a neighborhood.

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 5

C. Scheduling

With the goal to improve channel usage through rapid
scheduling, we propose an algorithm that solves the scheduling
problem in small number of iterations. By listening to the
data broadcast by neighbors in their own time slots, each node
knows the free slots it can take over. The key idea behind how
we solve the assignment is to first find the unique free slots
set for the node itself, and then evenly distribute the free slots
with neighbors. As shown in Fig. 4 where two nodes i and j
have candidate slots cSi and cSj respectively. The idea is that
i takes {e|e ∈ cSi, e /∈ cSj}; j takes {e|e ∈ cSj , e /∈ cSi}, and
then i and j evenly share the remainder {e|e ∈ cSi, e ∈ cSj}.

cS i cS j

Fig. 4. Our approach to the assignment problem: the two ellipses stand for
the free candidate time slots cSi and cSj for nodes i and j respectively. i
takes {e|e ∈ cSi, e /∈ cSj}; j takes {e|e ∈ cSj , e /∈ cSi}, then i and j
evenly share {e|e ∈ cSi, e ∈ cSj}.

However, when considering a real deployment with many
nodes in a complex network topology, this is difficult to
achieve. We propose Algorithm 1, that can safely and quickly
complete the allocation of all free slots. We show a complex
but representative example of four nodes with four different
candidate time slots in Fig. 6.

The input of the algorithm is the received packets from all
neighbors. The packets include cS and sS for all neighbors
in 2-hop range. As described in Section V-A, this information
is guaranteed to be received in one frame. This scheduling
algorithm is executed once at the start of every frame based
on the information received in last frame.

The algorithm has two key concepts among all definitions
above: the sibling neighbor set (sN) and shared free slots
(shdS). sNi of a node i contains the neighbors within 2
hops which have the same candidate slots as i (as previously
defined). One example of sibling neighbors is that nodes
placed in close proximity share the same neighbors and 2-
hop neighbors. shdSi are slots to be assigned, either shared
between sibling neighbors or to i.

The process is formalized by Algorithm 1, which is also
represented graphically in Fig. 5. This algorithm is fully
decentralized, and it is executed by every node independently
(for this reason, Algorithm 1 omits the subscript notation for
the sets). After listening for neighbors (line 1) for one frame,
each node stores the received messages, including candidate
slots, send slots of its 1-hop and 2-hop neighbors.

Fig. 5 shows the cS sets of four nodes (ni, nj , nk, np) as el-
lipses, marking the possible intersections between the ellipses
with letters from A to G. Each intersection set represents a set
of time slots.

We call this initial state of the system step 0. Alg. 1 proceeds
with the initialization of some variables, including the creation

A B C D E

G

F A B C D E

G

F

A B C D E

G

F

(step 0)

A B C D E

G

F

A B C D E

G

F A B C D E

G

F

ni

n j
nk

np

(step 1)

(step 1-b)(step 1-a)

(step 1-c) (step 2)

ni

n j
nk

np

ni

n j
nk

np

ni

n j
nk

np

ni

n j
nk

np

ni

n j
nk

np

Fig. 5. Slots scheduling process corresponding to Alg. 1. The candidate slots
set of four nodes (ni, nj , nk, np) are shown as ellipses with color, marking
the possible intersections between the ellipses with letters from A to G. The
disappeared color means the slots in the set are assigned after a step (step 0
→ step1 → step2).

Algorithm 1: TDMA schedule for slots distribution.

input : rcvPackets
output: cS, sS

1 listenNeighb(rcvPackets);
2 sS ⇐ ∅;
3 cS ⇐ {1, 2, 3, ..., n};
4 aN2 ⇐ N1 ∪N2;
5 forall ele ∈ aN2 do
6 cS ⇐ cS \ ele.sS
7 end
8 shdS ⇐ self.cS;
9 forall ele ∈ aN2 do

10 if self.cS == ele.cS then
11 sN.add(ele);
12 end
13 else if self.cS 6⊂ ele.cS then
14 shdS ⇐ shdS \ (self.cS ∩ ele.cS);
15 end
16 end
17 if size(sN) > 0 then
18 sS ⇐ distribute(shdS)
19 else
20 sS ⇐ sS ∪ shdS
21 end
22 cS ⇐ cS \ shdS
23 broadcast(cS, sS)

of an empty set of sending slots (sS, line 2), a candidate slots
set (cS, line 3) initialized with all slots from 1 to n (with n the
total number of nodes in the network), and a set that includes
all 1-hop and 2-hop neighbors (aN2, line 4). Then the cS is
updated by removing all the send slots (sS) of its neighbors
and 2-hop neighbors (lines 5-7). The remaining elements in

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 6

cS are the free slots, which initialize shared slots (shdS, line
8).

The next loop identifies sibling neighbors and shared slots.
Going through all neighbors, if a node finds a neighbor ele
with the same cS, it adds ele to the sN (lines 10-11). If
the neighbor is not a sibling and its cS is not a superset of
the node’s cS, the node removes the common candidate slots
elements (i.e. the intersection) from shdS (lines 13-15). This
rule makes sure the nodes can find unique shared slots to
allocate. Take node k in Fig. 5 as an example: as no other
node has the same cS, nk does not have sibling neighbors.
The cSk of nk are {C, D, E, G}, which are used to initialize
shdSk. When nk compares its cSk with those of nj and
np, the intersection {C, D, E} is removed from shdSk. The
comparison with ni is skipped since the cSi of ni ({B, C, D,
E, F, G}) is a superset of nk’s ({C, D, E, G}).

Similarly for ni, its shdSi is {F} after removing {B, C, D,
E, G} as intersections. Doing so for each node leads to unique
shdS: {A} for nj , {F} for ni, {G} for nk, and {E} for np.

After performing the above operations, the elements in
shdS are safe to use for each node. Each node shares its
shdS with its sibling neighbors if it has any (lines 18-19), or
else adds shdS to its own sS (lines 20-21). Then each node
updates cS by removing the remaining shdS. The new sS and
cS are broadcast in the next frame. At this point, some slots
are still not assigned, like slots in {B, C, D}. These slots are
assigned in the next frame.

After each node broadcasts its information in its own time
slot, all nodes receive the results from step 0 and reach the
state as shown in step 1 in Fig. 5. In step 1, following the
same procedures for step 0, nodes ni and nj become sibling
neighbors as they all have the same cS {B, C, D}. After
checking for intersections nk and np (that are not siblings),
have shdS={B}, as step 1-a of Fig. 5 shows in orange. The
sibling neighbors distribute their shared slots evenly (line 19),
which means both ni and nj get part of {B} without collisions.
Shared slots can be distributed by fairness, ID, or other rules,
as long as the rule allows for unique assignments from local
decisions. Nodes nk and np still do not have sibling neighbors
and therefore they just do the intersection check: nk ends with
shdS={C} at step 1-b and np with shdS={D} at step 1-c. All
free slots are assigned and no candidate slots are left in step 2.

A major advantage of our algorithm is that we can quickly
and safely assign all free slots, no matter how many slots in
each set from A to G. This allows our system to have a fast
response to dynamic topology changes.

Let us consider a specific example of a multi-hop network in
Fig. 6: the four nodes (ni, nj , nk, np) are within each other’s
communication range and form a cluster connected by solid
black lines. Other surrounding nodes with ID 1 to 6 are 2-
hop neighbors for the cluster. The dotted line between two
nodes means they are in 2-hop range or that they are a hidden
node [8] for each other. Node 1 is connected with ni, and
broadcasts in time slot 1 (its own slot). Therefore, ni must be
silenced in time slot 1, otherwise the node between ni and 1
would detect a collision. As the Fig. 6 illustrates, there exist
candidate slots {2, 3, 4, 5, 6} for ni, {1, 2, 3, 4} for nj , {3, 4,
5, 6} for nk, and {4, 5} for np. It takes 3 iterations to allocate

TABLE II
SLOTS DISTRIBUTION PROCESS FOR EXAMPLE IN FIG. 6

Step0 Step1 Step2 Step3

ni
cSi {2,3,4,5,6} {2,3,4,5,6} {2,3,4} ∅
sSi {si} {si} {si,2} {si,2}

nj
cSj {1,2,3,4} {1,2,3,4} {2,3,4} ∅
sSj {sj} {sj ,1} {sj ,1} {sj ,1}

nk
cSk {3,4,5,6} {3,4,5,6} {3,4} ∅
sSk {sk} {sk ,6} {sk ,6,3} {sk ,6,3}

np
cSp {4,5} {4,5} {4} ∅
sSp {sp} {sp,5} {sp,5,4} {sp,5,4}

all candidate slots as listed in Table II.
It can happen that the shdS becomes empty after removing

intersections with the cS of neighbors. This situation can cause
a deadlock: we let the node aggressively takes all the cS when
detecting no changes in cS for more than 3 frames to break
the deadlock.

ni :{2 ,3 ,4 ,5 ,6 }

n j :{1 ,2 ,3 ,4 }

nk : {3 ,4 ,5 ,6 }

n p :{4 ,5}

ni

n j

n p

nk
1

4

6

3

5

2 In 2 hops range
 In range

Fig. 6. Example of the candidate slots of four nodes (ni, nj , nk, np) in a
multi-hop network. The number sets at the bottom are the candidate slots. A
black solid line indicates that nodes are in direct communication range, and
the blue dotted line indicates they are at 2-hop distance.

D. Node arrival and departure

Algorithm 1 allocates all free slots, which means that in
any 2-hop sub-graph, the shared channel medium is fully used.
Therefore, when a new node enters the 2-hop neighborhood
of a cluster of nodes, it generates unavoidable conflicts: at a
minimum, its sending slot collides with the schedule of the
cluster. We provide a two-step solution to quickly resolve the
collision. Suppose node i enters the range of a cluster B, the
first step is to have B release i’s own slot. As we do not
have precise clock synchronization, it is likely for nodes in B
to receive a message from i. When a node in B receives a
message from i, it adds i to its neighbor list and propagates
its presence to the rest of B, freeing i’s own slot.

A second step is to avoid collisions between the extra slots
of i and B. We set that the node with the larger number of
send slots must release the slots causing collisions. After i is
allocated its own slot, i broadcasts its cSi and sSi and receives
the same information from neighbors. When i finds it shares
a slot s from sSj with a 1- or 2-hop neighbor j (assume
node j ∈ B, and i 6= j), namely s ∈ (sSi ∩ sSj), i checks

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 7

the number of its sSi: if it has more slots in sSi than the
conflicting neighbor, it removes s from sSi. Conversely, if j
has more sSj than i, j releases s. If both nodes have the same
number of send slots, the node with the lowest ID releases s:

sSi =

sSi if card(sSi) < card(sSj)

sSi if card(sSi) = card(sSj) and i > j

sSi \ s if card(sSi) = card(sSj) and i < j

sSi \ s if card(sSi) > card(sSj)

(1)

With this solution, collisions can be solved in one frame.
Note that the collision-free part of the previous scheduling
result is maintained, which allows the system to adapt to a
new schedule. This behavior is replicated if multiple nodes
join the neighborhood at the same time.

If a node leaves the neighborhood, its slots should be
reassigned. When a node i stops receiving messages from a
neighbor j, i removes j from its neighbor list, as well as
releasing all slots assigned to j. These time slots become can-
didate slots and participate in TDMA scheduling as described
in Section V-C.

E. Fairness and extra slots

Considering n number of slots in one frame, to guarantee
a fair slot allocation, if a node i has a number of send slots
card(sSi) > 2n/card(aN2

i), meaning more than twice the
average allotment of its neighborhood, ni releases as many
slots as needed to reach card(sSi) = n/card(aN2

i). The re-
leased slots become candidate slots for its 2-hop neighborhood
and follow the scheduling algorithm in Section V-C.

The role of the extra slots depends on the application. For
our localization purposes, each node performs two tasks in the
extra slots:

1) ranging with one of its neighbors;
2) broadcast the ranging measurement.

Every node maintains an age list of its neighbors and selects
the ranging target which has the oldest ranging measurement.
It is worth noting that the measurements are also updated
from the neighbors’ measurement broadcast, avoiding repeated
mutual ranging in short intervals.

VI. RELATIVE LOCALIZATION

Some wireless sensor network localization systems use an-
chors or landmarks with known positions, and use centralized
control to propagate the position results [47]. We propose a
collaborative localization system based on ranging using UWB
sensors [40].

The proposed TDMA algorithm maximizes the use of the
UWB channel, allowing ranging measurements between all
nodes at high frequency. Using the ranging information, each
node can construct a local topological map of its neighbors’
positions. By broadcasting, receiving, and fusing the local
maps, the nodes can converge towards a global map.

In this work, we consider the 2D localization for the
nodes in the system. Node i has a neighbor set N1

i , and
it creates a graph of its surroundings as Gi(Vi, Ei) where

Vi = {vt|t = i or t ∈ N1
i } and Ei = {ekj |k, j ∈ Vi, i 6= j}.

For construction of a local map Mi, the goal is to find:

Mi = {Xj |Xj = (xj , yj) ∈ R2, j ∈ Vi}

Similarly, for the recovery of the global map, the goal is to
find:

MG
i = {Xj |Xj = (xj , yj) ∈ R2, j ∈W}

where W =
⋃

j∈Ni

Vj .

A. Local map construction

To build the nodes’ local maps, we use a similar method
as the initialization stage of our previous work [40]. The
difference in this work is that each node estimates the map
locally. Given our hypothesis of a highly dynamic system,
waiting for all ranging measurements to be propagated to build
a global map as in [40] can introduce significant errors due
to the use of outdated measurements. Therefore, each node
creates a local map using the latest ranging measurements
(which is therefore always up-to-date), and then merge the
local maps at a later stage.

To build a local map, each node selects two neighbors
as reference nodes to initialize the coordinate frame. The
choice of reference nodes can greatly influence the localization
accuracy. Yang [38] proposed the idea of the quality of
trilateration to find appropriate reference nodes from nodes
with known positions. Priyantha [11] proposed a relative
localization algorithm by first selecting five reference nodes,
and then applying an optimization process. In our case, the
nodes do not have any neighbor with known positions. We
propose a reference node selection that considering the ex-
pected trilateration performance, the number of neighbors, and
the timestamps of the ranging measurements.

Origin node

Axis seeds

Trilateration nodes

Multilateration nodes

C

B

O

dob

dbc

doc

Fig. 7. Local map construction with nodes of different roles. The origin node
and axis seeds (reference nodes) are used to create the coordinate frame.
Nodes that have measurements to the reference nodes use trilateration to get
their position. The rest estimate their position by multilateration to the nodes
that already localized.

As showed in Algorithm 2, the system includes two parts:
local map construction (lines 1-19) and global map recovery
(lines 20-24).

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 8

Each node creates a map of its neighbors based on its own
ranging measurements (named rangeMeas) as well as received
measurements (named receivedMeas).

In Alg. 2, rangeMeas[tID, range, age] indicates an ego
ranging measurement to the target neighbor tID, and receive-
dRange[sID, tID, range, age] indicates the received range
measurement from node sID to node tID. All these range
measurements are timestamped to allow the node to use the
latest measurements.

Algorithm 2: Map construction for relative localization

input : neighbList, {rangeMeas[tID, range, age]},
{receivedMeas[sID, tID, range, age]}, receivedMaps

output: localMap, globalMap
1 Origin⇐ (0, 0);
2 X Seed⇐ Top(sortedCommonNeighb(Origin) ∩

sortedRange(Origin) ∩ sortedRangeAge());
3 Y Seed⇐ Top(sortedCommonNeighb(Origin) ∩

sortedRange(Origin,X Seed) ∩ sortedRangeAge());
4 CS ⇐ coordinateFrame(Origin,X Seed, Y Seed);
5 locatedNodes.add(Origin,X Seed, Y Seed);
6 suspendSet⇐ ∅ ;
7 for ele ∈ neighbList \ locatedNodes do
8 if rangeTo(Origin,X Seed, Y Seed)exist then
9 elePos⇐ trilateration(Origin,X Seed, Y Seed);

10 locatdNodes.add(elePos);
11 else
12 suspendSet.add(ele) ;
13 end
14 end
15 for ele ∈ suspendSet do
16 elePos⇐ multilateration(ele, locatedNodes);
17 locatdNodes.add(elePos);
18 end
19 globalOptimization(locatedNodes, rangePairs);
20 for map ∈ receivedMaps do
21 if overlayV ertexNum(globalMap,map) > 3 then
22 globalMap⇐Merge(globalMap,map);
23 end
24 end

The construction of the local map is divided into three
stages. Consider a node i: the first stage is to find reference
nodes to create the coordinate system (lines 1-5). Node i uses
its position as the origin of the coordinate frame (line 1). i
then identifies another node X Seed to define its x axis. The
selection of X Seed is based on three criteria (line 2):

1) the number of common neighbors with node i should be
large, which is found by sorting size(N1

i ∩N1
j), where

j ∈ N1
i ;

2) the node should be as far as possible from i, which is
selected by sorting eij , where j ∈ Ni , eij ∈ rangeMeas;

3) the measurement should as recent as possible, which is
selected by sorting the ages of eij , where j ∈ Ni, eij ∈
rangeMeas.

Then node i uses similar criteria to select another node Y Seed
to define the y axis. Suppose node i select node j as X Seed
and k as Y Seed. The mutual distances between i, j, and k

are [dij , djk, dik]. i calculates the coordinates of j and k as:

Xi = (0, 0),

Xj = (dij , 0),

Xk =

d2ik + d2ij − d2jk
2dij

,±

√√√√d2ik −

(
d2ik + d2ij − d2jk

2dij

)2

(2)

which corresponds to line 4 in Alg. 2. Note that we use the
positive value for the Y coordinate of Xk. Then X Seed and
Y Seed are added to locatedNodes with their coordinates.

In a second stage, each node localizes the remaining
neighbors with respect to the itself and the two reference
nodes by trilateration (lines 6-14). Sometimes neighbors do
not have ranging measurements to all reference nodes, or the
ranging measurements are outdated. In this case, the node
cannot perform trilateration is added to suspendSet (line 12)
to be reexamined at a later stage. The nodes with successful
trilateration are put into locatedNodes (line 10).

In a third stage, each node attempts to localize the nodes j
with j ∈ suspendSet using the existing ranging measurements
with least squares multilateration (lines 15-17) [40]:

X ∗j = argmin
Xj

∑
k∈locatedNodes

(djk − ‖Xj −Xk‖)2, (3)

with X ∗j the computed coordinates of node j. Following this
procedure, a node can acquire the coordinates of all neighbors
that can be located in the local map. These nodes are added
to locatedNodes. However, these coordinates do not consider
the error model of the ranging sensor.

UWB sensors have TWR error that depends on many
factors [48]. Lederberger et al. [49] introduce a Gaussian
process error model for UWB ranging. However, this model
requires knowledge of the relative angle between UWB an-
tennas, making it impractical for our system. We apply a least
square optimization to the coordinates of all nodes except
for the origin and the y coordinate of X Seed (that are all
zero). Equ. 4 shows the globalOptimization step of line
19 in Algorithm 2: all mutual distance measurements for
nodes in locatedNodes are used to find the optimal coordinate
estimations. The coordinates from the previous stages are used
as the initial value for the least square optimization.

X ∗ = min
X

∑
i,j∈locatedNodes

(dij − ‖Xi −Xj‖)2

X ∗ : [x∗X Seed,X ∗t , ..], t ∈ locatedNodes \ X Seed
(4)

B. Global map recovery

Once a node i has built its local map Mi, it broadcasts it to
its neighbors. When a node i receives a map from a neighbor
j, it merges j’s map Mj to its local map Mi if the maps share
common nodes.

The key to merge different maps is to estimate translation,
rotation and reflection with respect to a given axis [50], [51].
In our case, reflection on the x axis might be induced since
nodes always select the positive value for the Y coordinate

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 9

of the Y Seed node. Therefore, compared to a classical 2D
transformation, we add an extra parameter related to reflection
to the transformation matrix. Suppose node i has its own map
Mi and receives map Mj from node j. The goal is to find the
transformation T i

j = [R,T,F] from j to i to place the nodes
that only exist in Mj in i’s coordinate frame:

T i
j =[R,T,F]

R =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
, θ ∈ (−pi, pi]

T =

[
tx
ty

]
, tx, ty ∈ R

F =

[
1 0
0 γ

]
, γ = 1 or − 1

(5)

where [R,T,F] correspond to the rotation, translation, and
reflection matrices, respectively.

A node can start merging two maps if the maps have more
than three common vertices (lines 20-24 in Alg. 2). We use
V (Mi∩Mj) to indicate the common vertices between Mi and
Mj . We use a least squares optimization to find the optimal
transformation T ∗:

T ∗ = min
[R,T,F]

∑
t∈Vo

(Xi
t − (R · F ·Xj

t −T))2

where Vo = V (Mj ∩Mi).

(6)

Xi
t stands for the coordinates of node t in node i’s coordinate

frame. With T ∗, the node can transform the vertices in V (Mj\
Mi) to its coordinate frame to get a merged map MG

i :

mj\i = {Xi
t|t ∈ V (Mj \Mi),X

i
t = R · F ·Xj

t −T}
MG

i =Mi ∪mj\i,
(7)

where mj\i indicates the transformed map in ni’s coordinate
frame consisting of the vertices that are unique to Mj .

VII. EXPERIMENTS

A. Simulations

We perform a set of simulations to assess the scalability
of the proposed algorithm. The algorithm is run in a custom
simulator written in Python and run on a laptop with 16GB
of memory and an Intel i7-6700HQ processor. We simulate
different numbers of nodes in an arena with a size of 50m×
50m. The communication range between nodes is 5m. The
nodes are randomly distributed in the arena, as shown in Fig. 8.
We use three different orders of magnitude (10, 100, 1000)
for the number of nodes in the system to simulate different
deployment densities. We allow a maximum of 50 frames for
the TDMA scheduling. The length of each time slot (as tslot) is
defined as 3 ms (the time for an UWB ranging operation [3]).

Fig. 9 shows the scheduling process for a system with a
distribution of 100 nodes in Fig. 8, meaning there are 100 slots
in a frame. Each node starts with a send slots set with only
its own slot, and they have an average of 79 candidate slots
available to assign. The number of candidate slots decreases
quickly over time, which means the slots are assigned. All
candidate slots are assigned around the 6th frame and each

node is given 27 slots on average. The initial peak in the send
slots suggests some form of collisions. Collisions are resolved
in one frame (by releasing slots) and therefore the number of
send slots quickly decreases.

0 10 20 30 40 50

0

10

20

30

40

50

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22 23 24

25

26

27

28

29
30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53
54

55
56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74
75

76

77

78

79

80

81

82
83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Fig. 8. Random distribution of 100 nodes in a area of 50m*50m arena.

0 10 20 30 40 50
Frame iterations

0

10

20

30

40

50

60

70

80
Sl

ot
s n

um
be

r
Avg candidate slots - 100 nodes
Avg send slots - 100 nodes

Fig. 9. Scheduling process of a system with 100 nodes, distributed in an
area of 50m*50m. The average number of send slots and candidate slots are
plotted. At the start, each node has 1 send slot and an average around 79
candidate slots. Around frame 6, all the candidate slots are assigned and each
node got around 27 slots on average.

The distribution with 1000 nodes is quite dense as shown in
Fig. 11. Using the same setup for the arena and slot size, we
run each experiment 30 times and show the aggregate results
in Fig. 10 and Table III.

Fig. 10 also plots the average number of frames needed to
assign all the candidate slots (“frames” in the plot). We can see
the increase in the number of frame iterations is fundamentally
linear even for an exponential increase in the number of nodes.
The average number of send slots increases significantly from
10 to 100 nodes, but due to the increase in density, it is
basically unchanged from 100 to 1000 nodes.

In Table III, N Frame cy is the number of slots in a cycle
of one frame, which has the same value of the number of
nodes (N Nodes) in the network, and N Neighbors is the
average number of neighbors of each node. Density is the
ratio between the “communication area” occupied by all nodes

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 10

and the total area of the arena [52], as shown in Equ. 8. As the
size of the arena is fixed, it is linearly related to the number
of nodes.

Density =
N ∗ πR2

L2
(8)

where R = 5 and L = 50 in our experiment.
The average (Avg) and standard deviation (Std) for frame

iterations (Frames) and resulting send slots (sS) listed in
Table III correspond to Fig. 10.

Finally, we report some additional measurements:

T Frame cy = tslot · N Frame cy
Avg T Frame cy = 2 · Avg Frame · T Frame cy

N sS =
Avg sS

T Frame cy
LN sS = (1 + N Neighbors) · N sS

Total N sS = N sS · N Nodes

(9)

T Frame cy is the time taken for each frame cycle;
Avg T Frame is the average time needed for scheduling
considering two cycles; N sS is the average number of slots
per node per second, which indicates the number of range each
node can measure per second; LN sS is the total number of
slots used by a local neighborhood per second, including the
node and its neighbors; Total N sS is the total number of
slots per second across the whole network, indicating the total
number of ranging measurements can be made in the system.

From Table III, we can see the number of frames used
in scheduling (Avg Frames) does not increase significantly
between 100 and 1000 nodes. However, the time duration
(Avg T Frame) is still large compared to a 100 nodes con-
figuration: this result is acceptable considering the extremely
high density of devices (see Fig. 11 for an intuition).

In terms of network usage, N sS is equal to 1/tslot (=333.3)
when there are no neighbors. For the 10 nodes configuration,
which is quite sparse, the average number of slots (N sS) for
each node is 263. The slots used by local neighborhoods on
average (LN sS) is 336.4. This is because the average number
of neighbors (N Neighbors) is only 0.28.

For the other configurations, the LN sS have a similar
value. This is due to the fact that some of the slots are used
by 2-hop neighbors. To find the maximum of Total N sS, we
consider the maximum number of nodes Nmax allowed in the
arena without any intersections of their communication ranges,
i.e. when each node can make full use of the channel:

Nmax <
L2

πR2
=

50 · 50
π · 5 · 5

= 31.8 (10)

Nmax is less than the ratio between the area of the arena
and the communication area. Therefore, the maximum of
Total N sS can not be larger than Nmax · 1/tslot, which is
10600. We can see in the configurations of 100 and 1000
nodes, the results are close to full channel usage.

B. Hardware setup

We test the system with a physical implementation with 12
nodes, as shown in Fig. 12-b. Except for the unique ID of each

TABLE III
SCALABILITY STUDY

10 nodes 100 nodes 1000 nodes
N Frame cy , N Nodes 10 100 1000

N Neighbors 0.28 2.29 28.73
Density 0.31 3.14 31.41

Avg Frames 1.00 6.41 20.76
Std Frames 0.0 1.25 9.46

Avg sS 7.89 27.01 28.28
Std sS 0.89 1.71 8.66

T Frame cy 0.03 s 0.30 s 3.0 s
Avg T Frame 0.06 s 3.84 s 124.8 s

N sS 263 90.03 9.43
LN sS 336.4 296.2 280.3

Total N sS 2630.0 9003.33 9433.33

101 102 103

Number of nodes

0

5

10

15

20

25

30

35

Nu
m

be
r o

f F
ra

m
es

/S
lo

ts

Frames
Send slots

Fig. 10. Scalability study with 10, 100, and 1000 nodes. Frames stands for the
average number of frames used before all the candidate slots are distributed.
Send slots shows the average number of result slots each node gets.

0 10 20 30 40 50

0

10

20

30

40

50

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

2122

23

24

25

26

27

28

29

30

31

32

33

34

35
36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82
83

84

85

86

87
88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108
109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133
134

135

136

137

138

139

140

141

142

143

144

145

146

147148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168
169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186
187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211 212

213

214

215
216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233 234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254
255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282
283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315
316

317

318

319

320

321
322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340
341

342 343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373374

375

376

377

378

379

380381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398 399

400

401

402

403

404

405

406

407

408409

410

411

412

413

414

415
416

417

418419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458 459

460

461

462

463

464

465

466

467

468

469
470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502
503504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520 521

522

523

524

525
526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555
556

557

558

559

560

561

562
563564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624625

626

627

628

629

630

631632

633

634

635

636

637

638

639

640

641642

643

644

645

646
647

648

649

650

651

652

653

654

655

656 657

658

659

660
661

662

663

664

665

666

667

668
669

670

671

672

673

674

675

676

677

678

679
680

681

682

683

684

685

686
687

688

689

690691

692

693
694

695

696

697698

699

700

701 702
703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718 719

720

721

722

723

724

725

726

727

728

729

730

731

732

733
734

735

736

737

738

739

740

741

742 743

744

745

746

747

748

749

750

751

752 753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774
775

776

777

778
779

780

781

782

783

784

785

786787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811
812

813

814

815

816

817

818819

820 821

822

823

824

825

826

827

828829

830

831

832

833

834

835

836

837

838

839

840

841

842 843

844

845

846

847

848

849

850

851

852
853

854

855

856

857

858

859

860

861

862

863864

865

866

867

868

869

870

871

872

873

874

875

876

877

878
879

880

881

882

883

884

885

886

887

888

889
890

891

892

893

894

895

896

897

898899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923
924

925

926 927 928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944
945

946947

948

949

950

951
952

953

954

955

956

957958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987
988

989

990

991

992

993

994

995

996

997

998

999

Fig. 11. Random distribution of 1000 nodes in a area of 50m*50m arena.

module, all modules are identical. Each module consists of a
Raspberry Pi 3 A+ with a Decawave 1000 [7] UWB module
from Pozyx [4] as its ranging and communication sensor. All
processing is performed on-board, with the exception of the
global map construction, which is done on a separate computer
used by the system operator. All communication between
nodes is implemented through the UWB channel, while a
802.11 network is used for control and debugging. Please
note that since the ceramic antenna of the Pozyx modules is

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 11

directional, we place the modules upright as shown in Fig. 12-
a to minimize orientation-related issues.

Pozyx UWB module

Raspberry Pi 3 A+Power bank

(a)

(b)

59 4 3 6 13

810121715

Fig. 12. The hardware modules used as nodes in our experiments. Each
module consists of a battery, a Raspberry Pi 3 A+, and a Pozyx module
based on the Decawave 1000 UWB chip. The numbers in (b) are the node
IDs. All the processing except for the global map recovery is done onboard
and all the communication between nodes passes through the UWB channel.

We conduct 3 sets of experiments to validate the system. To
evaluate the performance of TDMA scheduling and reschedul-
ing, we consider three situations: new nodes joining, nodes
leaving, and multi-hop scenarios.

To show the fast response of our system to changes in high-
traffic conditions, we test the effect of joining and leaving
nodes in a static, fully connected scenario, by placing the
nodes in proximity and turning on/off the nodes that are
joining/leaving.

We also test our algorithm in a dynamic environment by
moving the nodes from a fully connected network to a multi-
hop network. This result shows the conflict-free scheduling
and slot multiplexing usage in a complex network topology.

Finally, we conduct a comprehensive experiment to test the
spatial map construction for a dynamic network with mobile
devices. This last experiments shows that the system can
localize the devices using ranging in the assigned time slots.
Each node can construct its own local spatial map and recover
the global map using local communication.

C. New nodes joining

Without TDMA (or with Carrier Sense [25]), the system
may encounters a large number of collisions since all nodes
attempt to achieve high channel usage.

We place twelve modules together on a desk as shown in
Fig. 12-b. Starting the nodes in sequence, we can emulate new
nodes joining the network. We start nodes 1, 3, 4, and 5 at first.
After two minutes, we start nodes 6, 8, 12, and 13. Finally,
we start the remaining nodes: 7, 9, 10, and 15.

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

F
ra

m
e

S
te

p

0

20

80

40

60

Fig. 13. TDMA scheduling results for a system with new nodes joining.
Nodes group {1, 3, 4, 5}, {6, 8, 12, 13} and {7, 9, 10, 15} are started
gradually. This result is from the perspective of node 4, but it is the same
for everyone in the network as they are fully connected. The X-axis is the
slot ID and the Y-axis is the frame iteration, representing the time. A total
of 30 slots are configured. We can see that when a new group of nodes join
the system near frame 35 and 53, the system can quickly adapt to the new
schedule. All slots are occupied all the time to have full channel usage.

The scheduling process results are shown in Fig. 13. The
numbers from 0 to 29 on the x axis represent the slot IDs.
We use 30 slots in our system (with slot 0 is reserved for
the processing of TDMA algorithm). We select the 30 to have
a more visible scheduling result to show. The system can be
viewed as a system supporting a maximum of 30 nodes, but
only 12 nodes are studied. Each slot has a duration of 50 ms
due to firmware limitations of the Pozyx module. Ter Horst
et al. [3] show that a 3 ms slot is enough to perform ranging
measurements using the same Decawave 1000 UWB chip, but
for a different type of module. Our system could be set to
similar values on different hardware.

Having 30 slots of 50 ms means each frame is 3 seconds
due to our organization of two cycles per frame (see Fig. 2).
On the x axis, we show the 30 slots of the first cycle (cycle
A) of the frame as the scheduling is identical for both cycles.
Considering 12 nodes and 50 ms slot size, each node can be
assigned at least 2 slots per frame (one own slot and one extra
slot). Therefore, the lower bound slot use for each node is 4
slots every 3 seconds. The y axis is the frame count, increasing
in time, meaning that the scheduling forms a grid showing the
assignment of slots in time with colours assigned according
to the assigned node identity. This reporting is a general way
to show the scheduling speed, and it is independent from the
slot size, which can differ based on the system configuration.

From Fig. 13, we can see that slot scheduling can quickly
adapt to network changes and obtain a conflict-free schedules
with full slot use in two to three frames. During the first 3
frames, almost all slots except slots 3, 4, and 5 are assigned
to the node with ID 1 (gray color). This is because when the
first 4 nodes are started, they first synchronize. However, since
the ID of node 1 is the smallest in the neighborhood, node 1

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 12

TABLE IV
SLOT DISTRIBUTION FOR NEW NODES MERGING SCENARIO

ID Stage 1 Stage 2 Stage 3
1 1,2,9,13,17,21,25,26,27,28,29 1,2,28,19 1,2,29
3 3, 6, 10, 14, 18, 22 3,9,10,14,18,22 3,11,22
4 4, 7, 11, 15, 19, 23 4,7,11,15,17,19,23 4,14,19
5 5, 8, 12, 16, 20, 24 5,16,20,21,24 5,16,24
6 6,25 6,1,25
8 8,26 8,20,26

12 12,27 12,27,28
13 13 13
7 7,18
9 9,21
10 10,23
15 15

enters the TDMA scheduling phase directly, while the other
three nodes synchronize to node 1 instead.

Therefore, node 1 does not receive any candidate slots or
sending slots information from the other nodes and takes all
idle slots. Note that node 1 does not occupy slots 3, 4, 5 since
its neighbors still broadcast heartbeat messages (i.e. they notify
node 1 of their presence) during synchronization. After the slot
usage fairness check described in Section V-E, node 1 releases
some slots for its neighbors: nodes 3, 4, and 5 can get these
extra slots after they are synchronized. One can see that node
3 gets slot {6, 10, 14, 18, 22} as extra slots starting from
frame 3. Node 4 and 5 get {7, 11, 15, 19, 23 } and {8, 12,
16, 20, 24 }, respectively. All the remaining slots are occupied
by node 1. The four nodes share slots 6 to 25 periodically:
this is because they are sibling nodes, and get a shared slot
set of {6-25} during scheduling.

Around frame 35, we turn on four additional modules with
ID 6, 8, 12, and 13. We can see that once the new nodes
are detected, their own slots {6, 8, 12, 13} are released
immediately. As the number of neighbors increases, the older
nodes notice they are using too many slots during their fairness
check and begin to release slots. The change of slot owner
is reflected with color changes for columns {9, 17, 21, 25,
26, 27}. Some collisions do occur during scheduling on these
slots, which are indicated by the colored dots next to the
columns. We can see that the collisions are resolved within
five frames (mostly in two frames), leading again to full slot
usage. Following a similar process, we turn on the remaining
four nodes, which reach a new schedule after 3 frames. The
resulting schedule for each node during the three stages of the
experiment is shown in Table IV. Please note some slots have
a short white gap: this is due to the initial synchronization of
the newly added nodes.

D. Nodes leaving

We tested the system with the same setting as the nodes
joining experiment, but starting with all modules turned on,
after which we turn off two groups of 4 nodes in sequence.
First, nodes with ID 7, 9, 10, 15, followed by nodes 1, 3, 4,
5. The scheduling results are shown in Fig. 14, with the same
axes and content format as Fig. 13.

We can see that the slots are always fully used for the three
stages: the system adapts to the new schedule as soon as the

TABLE V
SLOT SCHEDULE FOR NODES LEAVING SCENARIO

ID Stage 1 Stage 2 Stage 3
6 6,17,28 6,17,28 1,5,6,14,17,24,28,29
8 8,19 8,19 2,7,8,16,19,25
12 12,22 12,22 3,10,12,20,22,26
13 13,23 9,13,15,18,23 4,9,11,13,15,18,21,23,27
1 1,2,24,29 1,2,7,10,20,21,24,29
3 3,11,25 3,11,25
4 4,14,26 4,14,26
5 5,16,27 5,16,27
7 7,18
9 9
10 10,20,21
15 15

nodes detect the departure of a set of nodes. The free slots
are allocated by the remaining nodes and reach a conflict-free
schedule. The scheduling result of each node in every stage is
listed in Table V.

Please note that the white gaps are mainly caused by the
nodes leaving the system: we have set a timeout of 3 frames
without messages from a node before considering that it has
left the neighborhood to avoid rescheduling due to network
noise. A short gap can also be caused by synchronization
induced by the departure of the node with the smallest ID
(which is used as a reference). This happens during the
transition from stage 2 to stage 3, when the node 1 is turned
off. In this scenario, node 13 took three frames to synchronize
with the new reference node 6, leading to the gap for slot 13.

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

F
ra

m
e

S
te

p

0

10

20

30

40

Fig. 14. Scheduling result of experiment that nodes leave the network. Starting
from all modules powered on, we first turn off nodes with the ID of 7, 9, 10,
15 near the frame 10, and then turn off nodes 1, 3, 4, 5 near frame 30. This
plot is based on the logs from node 13. We can see when nodes left near
frame 10 and 30, the released slots are allocated by the rest nodes and reach
a conflict-free schedule.

E. Multi-hop TDMA scheduling

We tested the system in the indoor parking lot at Poly-
technique Montreal as shown in Fig. 15. The parking lot has
very thick walls and makes it easy to set up a multi-hop
network. We first put all modules together in one parking spot
as depicted in Fig. 16-a. They form a fully connected network
with a TDMA schedule shown at the bottom of Fig. 16-a and

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 13

in the column “Stage 1” of Table VI. We can see they reach
a conflict-free schedule.

13
5 10

12 8 3

7

4

Fig. 15. Multi-hop experiment test field at parking place.

In a second stage of the experiment, we move the modules
to other parking spots, forming a multi-hop network topology
as shown in Fig. 15. The connectivity graph of the nodes is
shown in Fig. 16-b with lines between nodes indicating a data
and ranging connection.

Fig. 16. Multi-hop network TDMA experiment. Twelve modules are moved
from (a) to (b). The slots scheduling is shown with the color block under the
graph. In sub-figure (a), all nodes have the same scheduling as they are fully
connected. When moving nodes to form the topology in (b), they build a multi-
hop network. The bottom part of the figures shows the slot assignment (1 to
29) of a cycle. The boxes colors follow the tags colors (circles). For instance,
in slot 1 of (b) node 8 (green) and 1 (gray) use the channel simultaneously.
This is possible as they are three hops apart in the topology map.

The scheduling result is displayed in the color block of
Fig. 16-b, as well as listed in the column “Stage 2” in Table VI.
The slot schedule shown in Fig. 16 is plotted using the log
of each node, which includes its own time slot and the slot
schedule received from its neighbors.

TABLE VI
SLOT DISTRIBUTION FOR MULTI HOP NETWORK

ID Stage 1 Stage 2
10 10, 22 10,21,22
5 5,26,29 4,5,6,26,29

13 13,14,25 9,13,14,24,25
3 3,16,17 3,16,17
8 8,19 1,8,11,18,19,28

12 12,23 2,12,15,20,23
7 7,27 7,27
6 6,24 6,7,14,24,26
9 9,21 9,13,25,29
4 4,18,20 4,8,12,18,19,20,23

15 15,28 15,28
1 1,2,11 1,2,11

Taking the top line as an example, node 10 receives the
slot assignment of all its neighbors, namely neighbors 5, 13,
3, 8, 12. Compared with the following row, node 5 only has
neighbors 10 and 13. The advantage of our algorithm can be
seen from nodes that are three hops away: as an example,
nodes 5 and 6 share slot 26 (there are two colors on column
26 of Fig. 16-b) without collisions (the nodes are 3 hops apart,
see the graph in Fig. 16-b).

For this schedule, 21 slots out of 29 are multiplexed (shared
among multiple nodes), leading to full channel utilization.

F. Map construction

So far, we have proved that our system can effectively per-
form real-time TDMA scheduling with full channel usage. In
this experiment, we explore the relative localization capability
of the system.

In the first stage, we put all nodes in a fully-connected grid
formation, as shown in Fig. 17 and in Fig. 18-a. Using all
available ranging measurements, the nodes can easily recover
their local map. We show the map constructed by 4 randomly
selected nodes (all the remaining maps are similar) in Fig. 19.
We can see that they all have the same relative structure, but
with different coordinates as each node uses its own coordinate
frame.

15 4 7 12

8 1 9 6

5 13 3 10

Fig. 17. Node distribution at the start of map construction experiments. Nodes
are placed in a grid formation occupying an area around 8 m × 12 m.

When the nodes are moved to the configuration in Fig. 18-
b, the network topology changes and the nodes reschedule
the TDMA assignment with the same logic as in the previous
experiments. For this new configuration, we randomly select
3 nodes on the left side and 3 nodes on the right side to show
their local map in Fig. 20. We can see they are able to construct

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 14

1

313

12

10

98

7

6

5

415
17
.5
m

8.5m

1

3

13

12

10 98

7

6

5

4

15

(a)

(b)

27m

5.
5m

Fig. 18. The experiment involves two stages, corresponding to sub-figure
(a) and (b). All nodes start in a grid formation (a), the network is then fully
connected. They are then moved to configuration (b), showing a maximum of
three hops.

Fig. 19. Local map construction of nodes 6, 1, 13, and 10. They build their
own coordinate system and get the relative localization for other nodes. As
they are fully connected, the relative localization is the same, which is also
the same for the rest nodes.

the correct relative map. Using the local map from node 5 and
1, node 8 can recover the global map as shown in Fig. 21.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel distributed TDMA
algorithm that allocates all the idle time slots quickly to
maximize the communication and ranging channel usage on

Fig. 20. Local map construction of nodes 12, 1, 6, 8, 5, and 4 at stage 2.
Every node build a relative location for its neighbors. We can see the map
shows part of the map in Fig. 18-b.

5 0 5 10 15 20
m

10

5

0

5

10

m

8 6

5

3

10

1

9

4

7

12

15

13

Fig. 21. Global map recovery for node 8 when receiving local maps from
node 5 and 1.

mobile networks. For us, this high channel usage grants the
required high rate of measurement from UWB devices to
reach good localization accuracy. Our fast scheduling strategy
also makes the system suitable for a network with changing
topology. We presented a fully decentralized system that is
able to build a topology map in a UWB-only network. We
split the localization problem in the network into local relative
localization and global map merging. Although our system is
designed for UWB localization, our TDMA algorithm can also
be applied to any networks requiring high channel usage, with
static or mobile nodes. We acknowledge that our system is lim-
ited by the fixed size of the slots required in its frame structure
initialized at the start. It limits the TDMA scheduling process
to the update rate of a frame cycle. In future works, we will

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 15

implement an adaptive frame size to improve the scheduling
update rate. Furthermore, our neighborhood topological map
may fail if a node is moving fast with respect to our TDMA
cycle. To address this limitation and improve the localization
and tracking performance, we will fuse measurements from
different sensors, such as Inertial Measurement Units (IMUs)
or cameras.

REFERENCES

[1] A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen,
R. Raulefs, and E. Aboutanios, “Recent Advances in Indoor Local-
ization: A Survey on Theoretical Approaches and Applications,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 2, pp. 1327–1346,
2017.

[2] G. M. Mendoza-Silva, J. Torres-Sospedra, and J. Huerta, “A Meta-
Review of Indoor Positioning Systems,” Sensors, vol. 19, no. 20,
p. 4507, Jan. 2019, number: 20 Publisher: Multidisciplinary Digital
Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-
8220/19/20/4507

[3] T. ter Horst, “Ultra-Wideband Communication and Relative Localisation
for Swarming Robots: Ultra-Wideband Communication and Relative
Localisation for Swarming Robots,” 2019.

[4] “Pozyx - centimeter positioning for Arduino.” [Online]. Available:
https://www.pozyx.io

[5] D. Zito and D. Morche, “UWB Radios — The maturity age?” in
2016 14th IEEE International New Circuits and Systems Conference
(NEWCAS), Jun. 2016, pp. 1–4, iSSN: null.

[6] Q. Shi, X. Cui, S. Zhao, S. Xu, and M. Lu, “Blas: Broadcast relative
localization and clock synchronization for dynamic dense multi-agent
systems,” IEEE Transactions on Aerospace and Electronic Systems,
2020.

[7] V. DW1000 User Manual, “2.11.(decawave, 2017),” 2019.
[8] W. Dargie and C. Poellabauer, Fundamentals of wireless sensor net-

works: theory and practice. John Wiley & Sons, 2010.
[9] N. Abramson, “THE ALOHA SYSTEM: another alternative for com-

puter communications,” in Proceedings of the November 17-19, 1970,
fall joint computer conference, ser. AFIPS ’70 (Fall). Houston, Texas:
Association for Computing Machinery, Nov. 1970, pp. 281–285.

[10] Chenxi Zhu and M. Corson, “A five-phase reservation protocol (FPRP)
for mobile ad hoc networks,” in Proceedings. IEEE INFOCOM ’98,
the Conference on Computer Communications. Seventeenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Gateway to the 21st Century (Cat. No.98CH36169), vol. 1. San
Francisco, CA, USA: IEEE, 1998, pp. 322–331.

[11] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, “Anchor-
free distributed localization in sensor networks,” in Proceedings of the
1st international conference on Embedded networked sensor systems,
2003, pp. 340–341.

[12] Y. Liu, H. Wang, M. Peng, J. Guan, and Y. Wang, “An incentive
mechanism for privacy-preserving crowdsensing via deep reinforcement
learning,” IEEE Internet of Things Journal, 2020.

[13] Y. Liu, T. Feng, M. Peng, J. Guan, and Y. Wang, “Dream: Online
control mechanisms for data aggregation error minimization in privacy-
preserving crowdsensing,” IEEE Transactions on Dependable and Se-
cure Computing, 2020.

[14] W. Quan, Y. Liu, H. Zhang, and S. Yu, “Enhancing crowd collabora-
tions for software defined vehicular networks,” IEEE Communications
Magazine, vol. 55, no. 8, pp. 80–86, 2017.

[15] W. Quan, N. Cheng, M. Qin, H. Zhang, H. A. Chan, and X. Shen,
“Adaptive transmission control for software defined vehicular networks,”
IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 653–656, 2018.

[16] A. Prorok and A. Martinoli, “Accurate indoor localization with ultra-
wideband using spatial models and collaboration,” The International
Journal of Robotics Research, vol. 33, no. 4, pp. 547–568, 2014, 05.

[17] J. Li, Y. Bi, K. Li, K. Wang, F. Lin, and B. M. Chen, “Accurate 3D Local-
ization for MAV Swarms by UWB and IMU Fusion,” arXiv:1807.10913
[cs], Jul. 2018, arXiv: 1807.10913.

[18] K. Guo, X. Li, and L. Xie, “Ultra-wideband and Odometry-Based Coop-
erative Relative Localization With Application to Multi-UAV Formation
Control,” IEEE Transactions on Cybernetics, pp. 1–14, 2019.

[19] F. M. Martel, J. Sidorenko, C. Bodensteiner, M. Arens, and U. Hugen-
tobler, “Unique 4-DOF Relative Pose Estimation with Six Distances for
UWB/V-SLAM-Based Devices,” Sensors, vol. 19, no. 20, p. 4366, Oct.
2019.

[20] H. Xu, L. Wang, Y. Zhang, K. Qiu, and S. Shen, “Decentralized Visual-
Inertial-UWB Fusion for Relative State Estimation of Aerial Swarm,”
p. 7, 2020.

[21] M. Ridolfi, S. Van de Velde, H. Steendam, and E. De Poorter, “Analysis
of the Scalability of UWB Indoor Localization Solutions for High User
Densities,” Sensors (Basel, Switzerland), vol. 18, no. 6, Jun. 2018.

[22] N. Macoir, M. Ridolfi, J. Rossey, I. Moerman, and E. De Poorter,
“Mac protocol for supporting multiple roaming users in mult-cell uwb
localization networks,” in 2018 IEEE 19th International Symposium on”
A World of Wireless, Mobile and Multimedia Networks”(WoWMoM).
IEEE, 2018, pp. 588–599.

[23] J. Zhu and S. Kia, “A SPIN-based dynamic TDMA communication
for an UWB-based infrastructure-free cooperative navigation,” IEEE
Sensors Letters, pp. 1–1, 2020.

[24] J. Degesys, I. Rose, A. Patel, and R. Nagpal, “Desync: self-organizing
desynchronization and tdma on wireless sensor networks,” in Proceed-
ings of the 6th international conference on Information processing in
sensor networks, 2007, pp. 11–20.

[25] “IEEE Standard for Local and metropolitan area networks–Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE Std
802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), pp. 1–314, Sep.
2011, conference Name: IEEE Std 802.15.4-2011 (Revision of IEEE Std
802.15.4-2006).

[26] “ALOHA packet system with and without slots and capture | ACM
SIGCOMM Computer Communication Review.” [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/1024916.1024920

[27] J. Yeo, H. Lee, and S. Kim, “An efficient broadcast scheduling algorithm
for tdma ad-hoc networks,” Computers & operations research, vol. 29,
no. 13, pp. 1793–1806, 2002.

[28] G. Wang and N. Ansari, “Optimal broadcast scheduling in packet radio
networks using mean field annealing,” IEEE Journal on selected areas
in Communications, vol. 15, no. 2, pp. 250–260, 1997.

[29] S. Ramanathan, “A unified framework and algorithm for (T/F/C)DMA
channel assignment in wireless networks,” in Proceedings of INFOCOM
’97, vol. 2, Apr. 1997, pp. 900–907 vol.2, iSSN: 0743-166X.

[30] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: Distributed Ran-
domized TDMA Scheduling for Wireless Ad Hoc Networks,” IEEE
Transactions on Mobile Computing, vol. 8, no. 10, pp. 1384–1396, Oct.
2009, conference Name: IEEE Transactions on Mobile Computing.

[31] B. Dezfouli, “DICSA: Distributed and concurrent link scheduling algo-
rithm for data gathering in wireless sensor networks,” Ad Hoc Networks,
p. 18, 2015.

[32] Y. Xu, K.-W. Chin, and S. Soh, “A Novel Distributed Pseudo TDMA
Channel Access Protocol for Multi-Transmit-Receive Wireless Mesh
Networks,” arXiv:1607.02045 [cs], Jul. 2016, arXiv: 1607.02045.

[33] C. D. Young, “USAP: a unifying dynamic distributed multichannel
TDMA slot assignment protocol,” in MILCOM ’96, Conference Pro-
ceedings, IEEE Military Communications Conference, 1996, vol. 1, Oct.
1996, pp. 235–239 vol.1.

[34] H. A. Omar, W. Zhuang, and L. Li, “VeMAC: A TDMA-Based MAC
Protocol for Reliable Broadcast in VANETs,” IEEE Transactions on
Mobile Computing, vol. 12, no. 9, pp. 1724–1736, Sep. 2013, conference
Name: IEEE Transactions on Mobile Computing.

[35] C. Young, “USAP multiple access: dynamic resource allocation for
mobile multihop multichannel wireless networking,” in MILCOM
1999. IEEE Military Communications. Conference Proceedings (Cat.
No.99CH36341), vol. 1, Oct. 1999, pp. 271–275 vol.1.

[36] A. Kanzaki, T. Uemukai, T. Hara, and S. Nishio, “Dynamic TDMA slot
assignment in ad hoc networks,” in 17th International Conference on
Advanced Information Networking and Applications, 2003. AINA 2003.,
Mar. 2003, pp. 330–335.

[37] S. Cao and V. C. S. Lee, “A Novel Adaptive TDMA-Based MAC
Protocol for VANETs,” IEEE Communications Letters, vol. 22, no. 3, pp.
614–617, Mar. 2018, conference Name: IEEE Communications Letters.

[38] Z. Yang and Y. Liu, “Quality of Trilateration: Confidence Based Iterative
Localization,” in 2008 The 28th International Conference on Distributed
Computing Systems, Jun. 2008, iSSN: 1063-6927.

[39] S. Hadzic and J. Rodriguez, “Utility based node selection scheme for
cooperative localization,” in 2011 International Conference on Indoor
Positioning and Indoor Navigation, Sep. 2011, pp. 1–6.

[40] Y. Cao, M. Li, I. Švogor, S. Wei, and G. Beltrame, “Dynamic range-only
localization for multi-robot systems,” IEEE access, vol. 6, pp. 46 527–
46 537, 2018.

[41] S. Han, S. Lee, S. Lee, J. Park, and S. Park, “Node distribution-
based localization for large-scale wireless sensor networks,” Wireless
Networks, vol. 16, no. 5, pp. 1389–1406, Jul. 2010.

IEEE INTERNET OF THINGS JOURNAL, VOL. , VOL. 14, NO. 8, AUGUST 2020 16

[42] J. Liu and Y. Zhang, “Error Control in Distributed Node Self-
Localization,” EURASIP Journal on Advances in Signal Processing, vol.
2008, no. 1, p. 162587, Dec. 2007.

[43] M. Hadded, P. Muhlethaler, A. Laouiti, R. Zagrouba, and L. A. Saidane,
“Tdma-based mac protocols for vehicular ad hoc networks: a survey,
qualitative analysis, and open research issues,” IEEE Communications
Surveys & Tutorials, vol. 17, no. 4, pp. 2461–2492, 2015.

[44] L.-A. Phan, T. Kim, T. Kim, J. Lee, and J.-H. Ham, “Performance
Analysis of Time Synchronization Protocols in Wireless Sensor
Networks,” Sensors, vol. 19, no. 13, p. 3020, Jul. 2019. [Online].
Available: https://www.mdpi.com/1424-8220/19/13/3020

[45] L. Van Hoesel and P. Havinga, “A lightweight medium access protocol
(lmac) for wireless sensor networks,” in 1st Int. Workshop on Networked
Sensing Systems (INSS 2004), 2004.

[46] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-
efficient collision-free medium access control for wireless sensor net-
works,” in Proceedings of the 1st international conference on Embedded
networked sensor systems, ser. SenSys ’03. Los Angeles, California,
USA: Association for Computing Machinery, Nov. 2003, pp. 181–192.

[47] A. K. Paul and T. Sato, “Localization in wireless sensor networks:
A survey on algorithms, measurement techniques, applications and
challenges,” Journal of Sensor and Actuator Networks, vol. 6, no. 4,
p. 24, 2017.

[48] D. Ltd, “Aps011 application note: Sources of error in dw1000 based
two-way ranging (twr) schemes,” 2014.

[49] A. Ledergerber and R. D’Andrea, “Ultra-wideband range measurement
model with Gaussian processes,” in 2017 IEEE Conference on Control
Technology and Applications (CCTA). Mauna Lani Resort, HI, USA:
IEEE, Aug. 2017, pp. 1929–1934.

[50] S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple-Robot
Simultaneous Localization and Mapping: A Review: Multiple-
Robot Simultaneous Localization and Mapping,” Journal of Field
Robotics, vol. 33, no. 1, pp. 3–46, Jan. 2016. [Online]. Available:
http://doi.wiley.com/10.1002/rob.21620

[51] A. Cornejo and R. Nagpal, “Distributed range-based relative localization
of robot swarms,” in Algorithmic Foundations of Robotics XI. Springer,
2015, pp. 91–107.

[52] C. Pinciroli, A. Lee-Brown, and G. Beltrame, “A tuple space for data
sharing in robot swarms,” in Proceedings of the 9th EAI International
Conference on Bio-inspired Information and Communications Technolo-
gies (formerly BIONETICS), 2016, pp. 287–294.

