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This supplementary material presents additional details
as well as experimental results that provide more insights
on the proposed method. In particular, Section I presents
the task allocation algorithm, failure recovery algorithm and
inter robot communication. Section II discusses additional
simulation experiments evaluating robustness to noise.

I. DETAILED METHODS

At initialization, all the robots are in state unassigned. In
state unassigned, the robots respond to parent requests and
perform periodic broadcasts to indicate their availability. On
accepting parent requests, the robots switch from unassigned
to chain construction to act as networkers. All the robots
in state unassigned switch to task allocate whenever the
available task set(T) is non empty, and return to unassigned
when all the tasks are assigned to a worker robot. Immediatly
after assignment of a new task, the workers start electing
networkers to reach the target while preserving end-to-end
connectivity. Any intermediate robot failures are counter-
acted by a chain bridging algorithm that recovers broken
links in the chain. Figure 1 shows the high level state
machine of the proposed approach.

The task allocation problem considered in this work corre-
sponds to a Single Assignment problem (SA), where any give
free robot ri ∈ Nf can only be assigned one task τi ∈ T.
Task allocation is the initial step that is performed before
the actual execution of the chain construction. Each free
robot computes a local bid and updates the Virtual Stigmergy
(VS) [1] to reach a consensus on the task assignment. Virtual
Stigmergy is a 〈key, value〉 pair, fully decentralized shared
memory that uses Lamport clocks for maintaining the most
recent value associated with a key.

A. Task Assignment Algorithm

Initially, the sets Nf = Nr, Nc = ∅ and T contain
the list of tasks. The task assignment algorithm on each
robot, also referred to as the gradient algorithm shown in
Listing 1, locally computes one bid for each task in T based
on its distance from it, and conditionally updates the Virtual
Stigmergy (VS).

For each task, there is an associated key in the VS in
which a bid value is updated. For each τi ∈ T, the robot
computes its bid, checks if there is a bid already in the
VS, updates the bid if the local bid is lower. This process
of computing and checking the bid is done every k steps
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Fig. 1. High-level state machine used in the proposed approach.

for a small fixed bidding period. We refer to this parameter
k as the synchronization parameter. The parameter k and
the bidding period is determined by an upper bound based
on the communication error, number of robots, the network
topology and the convergence time of VS. When two robots
update the VS at the same time, they might have an identical
timestamp and cause a conflict. A conflict is resolved by
choosing the lowest bid that contains an identical time stamp
and its value is propagated automatically by the VS (see
[1]). Should the number of robots (Nf = ∅) be insufficient
to perform the available tasks, the root robot monitors and
delays the auction until a sufficient number of robots are
available. After the bidding period for a particular task, the
winner is elected as the worker. An identically bidding is
initiated when a root robot needs to be elected.

Note that we use a root robot because, for robotic swarms
deployments in real world missions in the foreseeable future,
we believe an operator will be required to monitor the swarm
(or be aided by it). The operator observes the actions of
the swarm and issues high level commands. As an example,
consider an emergency response scenario, in which a first
responder would use the swarm to obtain situational aware-
ness and assign new high-level tasks. The operator could also
be dynamically assigning new targets to the robots, as in
our outdoor field experiments (discussed in the manuscript).
We assume the operator is a member of the swarm so the
interface connecting to the operator (e.g. a ground station)
is also a swarm member, assigned with the root role. When
no operator is present and multiple robots can act as the
root, we use a gradient algorithm to achieve consensus on
the identity of the root. This last case is possible when the
swarm is completely autonomous.

In this work, we consider the local reward of the task
allocation algorithm to be the distance to the target criτi =
||xi − τj ||, this serves as an approximation of the actual



Algorithm 1 Concurrent Auction and consensus to assign
tasks in T to ri ∈ Nf
1: procedure GRADIENT ALGO(T, xi)
2: for each τi ∈ T do
3: if not(bidding timer[τi] % k) then
4: criτi = ||xi − τj ||
5: Current bid= Virtual Stigmergy.Get(τi)
6: if Current bid > criτi then
7: Virtual Stigmergy.Put(τi, criτi )
8: end if
9: else

10: bidding timer[τi] = bidding timer[τi] + 1
11: end if
12: if bidding timer[τi] == bidding time then
13: if Virtual Stigmergy.Get Id(τi) == ri then
14: ariτi = 1
15: ROLE =Worker
16: Virtual Stigmergy.Put(τi,NIL)
17: end if
18: Nτ = T/τi
19: end if
20: end for
21: end procedure
22: procedure CONFLICT MANGER(τi,local copy,remote copy)
23: if remote copy.data ≤ local copy.data then
24: return remote copy
25: else
26: return local copy
27: end if
28: end procedure

cost. The actual cost cactualriτi of a robot reaching the target
τi will always satisfy cactualriτi ≥ criτi . In certain complex
environments, it might be favorable to compute a path π(ri)
for a given target τi and use the length of the path as the
reward. The reward computed based on the path will be
closer to the actual cost.

In the presence of extreme packet drop rates, the task al-
location algorithm could elect multiple robots as the worker.
In such scenarios, the elected worker robots (on detection of
conflicts) negotiate to avoid the conflict. We believe that, if
a conflict arises in the task assignment, both robots might
be proceeding towards the same mission and eventually get
in communication range to negotiate. It is favorable to avoid
initiating another round of bidding because the earlier task
assignment might have failed due to packet drops or an
inability to communicate.

B. Failure recovery algorithm

The failure recovery algorithms is initiated, when a robot
in a chain determines that its parent or child is unresponsive
for a prolonged period of time. This unresponsive time
is a constant design parameter based on communication
error (packet drop). Listing 2 illustrates the failure recovery
procedure. The listing contains two routines, one for the
parent ri−1 and the other for the child ri+1. When a child
ri+1 becomes unresponsive, the robot ri turns into a tempo-
rary worker until it finds an appropriate robot to re-bridge
the connection. If no appropriate robot is found, then the
temporary worker becomes permanent and performs the task
at the appropriate location. During both routines, the robots
will try to identify any new potential connections using
the local chain link information Clocal and safe neighbor

Algorithm 2 Chian bridging algorithm ∀ri ∈ C
1: procedure FAILURE RECOVERY(NS

i , Clocal)
2: if ri+1 unresponsive then
3: if Connection request received then
4: child = Connection requester
5: Send response()
6: reset unresponsive()
7: if role == temporary worker then
8: role = Networker
9: end if

10: return
11: end if
12: Potential connections = (NS

i ∩ Clocal) ∪ (NS
i /N

S
i,old)

13: if (Potential connections 6= ∅) then
14: Send bridge request(Potential connections)
15: else
16: if ‖τ − xi‖ ≤ δtol then
17: role = worker
18: reset unresponsive()
19: advertise worker()
20: end if
21: role = temporary worker
22: Check for plan consistency()
23: uprefi = upathi (π(rn), F )
24: end if
25: NS

i,old = NS
i

26: end if
27: if ri−1 unresponsive then
28: if Connection request received then
29: parent = Connection requester
30: Send response()
31: reset unresponsive()
32: return
33: end if
34: Potential connections = (NS

i ∩ Clocal) ∪ (NS
i /N

S
i,old)

35: if (Potential connections 6= ∅) then
36: Send bridge request(Potential connections)
37: else
38: uprefi = upathi (π(rn), B)
39: end if
40: NS

i,old = NS
i

41: end if
42: end procedure

set NS
i . The robots also monitor the safe neighbor set to

determine the presence of new neighbors to link with. All
the identified potential connections will be sent a new request
to join the broken chain. If none of the potential connections
accepts the request, the robots will execute upathi (π(rn), B)
or upathi (π(rn), F ) in search of new potential connections.
Once a potential connection responds, the robots label this
connection as either parent or child and continue the mission.

C. Communication

TABLE I
TYPES OF GOSSIP MESSAGES.

Message Type Size (Bytes)
ID Key Value Extra Total

Request/Response(RR) 1 1 4 0 6
Status(S) 1 1 4 0 6

Velocity(V) 1 1 4*4 0 18
Parent Chain Links(PCL) 1 1 k*1 0 2+k*1
Child Chain Links(CCL) 1 1 k*1 0 2+k*1
Virtual Stigmergy(VS) 1 2 4+4*6 2+2 35

The information flow in the swarm is gossip-based and



the messages are distributed via local broadcast. The level
of communication is therefore O(1). Tab. I shows the types
of messages exchanged by the robots, their size and com-
position. “ID” indicates the class of the message, “key”
is a unique identifier of the message and “extra” indicates
the additional information to maintain data consistency, like
timestamps (Lamport clocks) and the ID of the last robot
that modified the message value. Request/response (RR)
messages are target messages to a given neighbor. The
primary role for RR messages is to send requests to free
robots and add them as networkers to the chain. RR messages
are also used during the failure recovery routines to request
a robot to commit and join a broken chain.

Status messages are heartbeat messages to monitor a robot
and identify the free robots in the neighborhood (to add an
edge or recover a broken link). The status messages also
act as a means to detect robot failures. When a robot does
not receive a heartbeat message for a given period of time
from its parent and child, this robot is declared unresponsive.
A failure recovery routine is initiated to regain connectivity
as in Section I-B. Velocity messages are used for obstacle
avoidance with Reciprocal Velocity Obstacles (RVO) [2].

The parent chain link is a sequence of IDs built from the
root towards the worker. Each robot receives the chain link
from its parent, shortens the message by k − 1 IDs, and
appends its own ID before sending it to its child. The child
chain link is a sequence of IDs, built in the opposite direction
of the parent strand: from worker to root, truncated by k
entries. The parameter k is introduced for scalability when
the number of robots in the chain increases. The primary
function of the chain link messages are to handle failures.
When a failure occurs, the robots make use of the chain
link messages to identify the robots involved in a broken
connection. Virtual Stigmergy (VS) messages are primarily
used to ensure consistency of the global path plan. The
decomposition of the message is: path point id (4 bytes),
dimension key (x,y,z: 4 bytes) and the actual value of the
point (x,y,z: 4 bytes). During the task allocation phase, VS
messages are used by the robots to agree on a global bid for
the tasks. VS messages used in bidding can be decomposed
as: task id (4 bytes) and bid for the task (4 bytes).

D. Bandwidth Usage

Fig. 2 shows the average size of messages by message
type, sent by robots participating in a chain and the available
bandwidth for relaying information (for other mission-related
tasks) assuming a constrained maximum bandwidth of 5 kbps
(e.g. a very long distance Xbee connection) during one of
the experimental runs with 4 equidistant targets at 10m. It
is worth noting that the total allowable message size per
time step was set to 150 bytes during our evaluations and
the algorithm converges with this bandwidth. During the
task allocation phase, the gradient algorithm sends periodic
messages to synchronize the bids (every k steps), causing the
bandwidth usage to exhibit periodic spikes. The bandwidth
peaks to the maximum allowable bandwidth right after the
path injection to the swarm and until the global path queries
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Fig. 2. Size of messages by type, total message size and available
bandwidth at 5kbps. Standard deviations as a halo.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Packet Drop

0.0

0.2

0.4

0.6

0.8

Ti
m

e 
Fa

ct
or

Fig. 3. Effect of packet drop on the chain construction.

form all members fade out. Most of the other messages
exhibit an even consumption of bandwidth except for the
chain link messages. The chain links messages starts to
increase as the number of robots in the chain increase and
stabilizes when the chain reaches the target.

E. Discussion on Convergence

The proposed control architecture uses a decentralized
shared memory system for exchanging the path computed
from one of the chosen robots and the convergence time
depends on the time taken by this underlying mechanism. In
our work, we use Virtual Stigmergy, a 〈 key, value 〉 tuple
information sharing mechanism. Virtual Stigmergy is bio-
inspired and provides demonstrated fast convergence in noisy
and dynamic topologies for thousands of robots. For more
information, we refer the reader to [1] for details, and to [3]
for formal modelling. Virtual Stigmergy uses opportunistic
synchronization: robots synchronize a particular tuple with
their neighbors only when that entry is needed. We control
the robots to ensure that they do not break connectivity, while
Virtual Stigmergy guarantees converge of the information
as they proceed towards the target. As long as there exists
consensus on the path, then it can be ensured that the robots
will eventually reach the assigned target.

The time-of-completion performance of our method de-
pend on the following four parts:
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Fig. 4. Effect of the sensing noise on a robot in the connectivity chain, From left to right and top to bottom, time factor for no noise, Gaussian white
noise std=0.1, std=0.2 and std=0.6. The ground truth distance shows the effect of noise on control and the sensed distance show the robots observation of
its parent.
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Fig. 5. Effect of sensing error on the chain construction.

1) Election of robots.
2) Path computation,
3) Path sharing, and,
4) Chain Construction.

The election of robots (1) is limited by a fixed time-out,
which we refer to as the bidding time. The path computation
(2) is also upper bounded by a small fixed time (the planning
time). The path sharing (3) and the chain construction (4)
times are variables that are impacted by several factors like
number of robots needed in the chain, the communication
topology, and the structure of the environment. We study
these variables in the first set of experimental results reported
in main manuscript (Figures 5 and 7). By normalizing across
scenarios, we show that our strategy uses about 20% more
time without obstacles (25% with obstacles) than motion
only. To the best of our knowledge, our work is the first
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Fig. 6. Effect of planning error on the chain construction.

combining all these elements to solve the exploration of
complex environments while maintaining connectivity.

II. ADDITIONAL EXPERIMENTS

We performed three sets of simulation experiments to
further evaluate the performance of the proposed method
under various noise levels. At first, we discuss the results
of these experiments and then discuss the convergence time
with real-robot experiments.

During the experimental evaluations discussed here, we
adapted the same simulation parameters as the experiments
discussed in the paper. Repeating each of the experimental
settings 30 times with random robot placement, we evaluate
the performance in the presence of noise. Here we use two
equidistant targets uniformly distributed on a circle (r = 10m)
and set Cn = 1.
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Fig. 7. Effect of synchronization parameter k (columns) and packet drop rate (rows) on the gradient algorithm. The last row of figures use a different
x-axis due to larger convergence time.

Fig. 8. Scale-free topology formed by a group of 100 robots during the task
allocation experiments. Cyan indicating the connection between the robots
and red leds on the robot indicating the elected robots for one of the task.

A. Communication Errors

We study the effect of packet drop on the con-
vergence time by simulating packet drop rates in
set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and use the time factor as
the performance metric. Error bars in figure 3 report the
min, mean, max, 5 percentiles and 95 percentiles of the time
factor. As expected, the experiments reveal an increase in
the amount of time to reach the targets with the increase
of communication error. On average, the robots reached the
targets in 33.5 seconds ( 0.159 time factor ) without packet
drop and increased to 112.8 seconds ( 0.537 time factor )
with 60 % of packet drop rate. There is approximately 300%
increase in the convergence time with a packet drop of 60%.
This increase in the time to reach the targets can be directly
attributed to the fact that the robots take more time to receive
responses to requests and increase the consensus time. We
conclude that the approach is able to converge with a packet
drop of upto 60%.



B. Sensor Noise

We simulate an additive Gaussian white noise
with mean µ = 0 and standard deviation σ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}m to the sensor measurements
to evaluate the effect of sensor noise. The sensor noise is
simulated by adding a random vector with the neighbor’s
range and bearing measurements. This random vector is
drawn from a Gaussian distribution by varying both bearing
(in range [0, 2 ∗ π]) and range in meters depending on
the noise standard deviation. Figure 5 reports the time
factors in presence of sensor noise. In comparison with the
communication error experiments, the mean time factor does
not significantly increase with sensor noise. However, the
sensor noise causes variance in the convergence time. The
time to reach the targets in the presence of Gaussian sensor
noise (µ = 0, σ = 0.6) is 49.1 seconds (0.234 time factor)
on average and show a standard deviation of 19.2 seconds
(0.091 time factor). Overall, there is about 15% increase in
convergence time in the presence of sensor noise.

Figure 4 reports the ground truth distance and a robot’s
observation of its parent with different amounts of noise.
With no noise in sensing, the robot is able to reach a stable
distance and maintain safe connectivity. The additive sensing
noise causes slight oscillations in control. It is worth noting
that even with a sensing noise of std=0.6m and the safe
communication distance set to 1.4m (noise random vector in
range [0,0.6]m about half the safe communication distance),
the robot is able to maintain safe communication distance
between its parent while the worker reaches its target.

C. Planning Error

We study the effect of planning errors in the chain
construction algorithm by introducing a virtual obstacle in
front of the two equidistant targets. The virtual obstacle
placed in front of the target had a width of 1m and vary-
ing length ({2, 4, 6, 8} m). The introduction of the virtual
obstacle among the robots creates a slightly deviated initial
plan and hence, introducing a planning error. Figure 6 reports
the time factors in the presence of the virtual obstacles. The
average time taken by the robots to the reach the targets stay
about the same with a very small mismatch in the initial plan
and slightly increases with the mismatch. In particular, the
mean time to reach the targets is 37.2 s (0.177 time factor)
with a 1m virtual obstacle and 47.5s (0.226 time factor) with
a 8m virtual obstacles, this is about 14% with respect to a
perfect planner.

D. Performance of the Gradient algorithm

We study the performance of the gradient algorithm de-
tailed in section I-A by varying the parameter k ∈ {1, 10, 20}
in the algorithm and with various packet drop rates D ∈
{0.0, 0.5, 0.9}. The parameter k is called the synchronization
parameter and determines the time duration between each of
the bid mismatch synchronizations. For this set of evalua-
tions, we choose a fixed scale-free topology with 100 robots
as shown in figure 8. The communication range of the robots
are set to 1.2m and the maximum messages size of each robot
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Fig. 9. Time taken to build the communication chain with real robots.

is set to 60 bytes. We assign 4 tasks to the robots at distance
of 10m from the center of the deployment cluster and evenly
distributed each 90 degrees. We use the total cost summation
for all four tasks on each of the robots, based on the local
assignment to evaluate the convergence of the algorithm.

Figure 7 reports the minimum, mean and maximum cost
of the local assignment for the four tasks on the robots
over various synchronization time k and packet drop rates.
For k=1, the algorithm performs synchronization of the
local bid every step resulting in higher bandwidth usage.
The parameter k essentially allows a gossip message to be
processed by a neighbor and to receive a response before
further packets are broadcast, avoiding flooding the network.
As it can be observed in Figure 7, a small value of k=10
allows the network to converge to the global cost faster than
with k=1 when there is no packet drop. As expected, the
convergence time of the cost increases with a very large drop
rates of 90%. The effect of a small synchronization parameter
becomes less useful with large packet drops. This essentially
means that flooding the network with gossip benefits the
convergence time with unreliable communication.

E. Convergence time in Real robots

The box plot in Fig. 9 shows the time required by the
robots in each setting to build the communication chain and
reach the target. We performed 10 experimental evaluations
for each of the setting shown the main manuscript (figure
8 bottom) and report the performance of the algorithm with
total time to reach the targets. Ground robots took on average
100s to reach the target with a wider variability (from 80s
to 150s). The heterogeneous team was faster with a median
time close to 50s. Finally, the flying robots were the fastest
with a median around 40s and very narrow variability due
to their holonomic motion.
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