
Real-time Navigation with Virtual Magnetic Fields
Supplementary Material

Majda Moussa and Giovanni Beltrame

January 7, 2021

1 Physics-Based Model

Consider an arena in which the magnetic field is given by a vector field ~B. At each point p(x, y)
we have ~B(x, y) and its gradient ~G(x, y). ~G is a vector that points in the direction in which ~B
rises most quickly and its magnitude determines how fast the field rises in that direction. The
gradient information can be used to optimally connect any point in the environment to a goal.

In a cluttered environment with obstacles, the goal is assigned to the highest conductivity
whereas the obstacles are assigned to zero conductivity. The environment is assigned to a
degraded conductivity which fades away when moving away from the goal (see equation 1).
Electrical currents are assumed to be floating in the environment, and the magnetic field induced
by these currents is used to find a free and optimal path to the goal.

The magnetic field can be modeled with Maxwell’s equations:

∂ ~B

∂t
= ∇× ~E (1)

∇× ~B = µ0
~J + µ0

∂ ~D

∂t
(2)

∇ · ~B = 0 (3)

where ~B is the magnetic field, ~E is the electrical field, ~J is the density of electrical currents
and µ0 is the free space permeability. Equation 1 (Maxwell-Faraday) draws the relationship
between the magnetic field ~B and the electrical field ~E. This relationship states that a time-
varying magnetic field will always coexist with a spatially varying, non-conservative electric
field, and vice-versa. Maxwell-Ampere’s equation (Equation 2) states that a magnetic field
~B can be generated in two ways: i) by electrical currents as expressed by Ampere’s law (see
Equation 4) and ii) by changing electric fields (a.k.a., displacement currents ~D) generated by
the magnetic field induced by the floating currents ~J . Under a low frequency ω = 0.05, it is safe
to neglect displacement currents. Hence, Equation 2 can be then reduced to Equation 4:

1

∇× ~B = µ0
~J (4)

According to Ohm’s law, the current density ~J is:

~J = σ ~E (5)

where σ is the electrical conductivity. The magnetic field ~B is usually an alternating field and
can be expressed in a time-dependent form as:

~B = ~B0 · eiωt (6)

By applying Ohm’s Law (Equation 5) and Faraday-Maxwell (Equation 1), Equation 4 can
be written as:

∇×∇× ~B = −k2 ~B. (7)

where k2 = iωµ0σ, defined for the goal, obstacles and the free environment as in Table S1.
Gauss’ law for magnetism (Equation 3) asserts that the net outflow of the magnetic field through
any closed surface is zero. Using Gauss’ law along with the vector calculus identity relationship
∇× (∇× ~B) = ∇(∇ · ~B)−∇2 ~B , Equation 7 reduces to:

∇2 ~B = −k2 ~B (8)

2 Dataset
We implemented Equation 8 in COMSOL1 and solved using its finite element solver. Table S1
summarizes all the physics model parameters. We used COMSOL LiveLink for MATLAB2 to
automate the dataset collection. Using MATLAB, we have randomly generated obstacles in a
square arena (10x10m). The geometrical properties of the arena, obstacles and goal are depicted
in Table S1. The generated scene is sent to COMSOL to compute the distribution of the mag-
netic field, which is then saved to disk. Fig. 1A shows an example of a magnetic field computed
by COMSOL given a conductivity distribution. A dedicated script was implemented to process
COMSOL’s output and store the scene as an image-like array where each pixel corresponds to
a magnetic field value.

We build a dataset with 20,000 samples. Each sample is an image-like array with two chan-
nels: i) the scene conductivity distribution and ii) the corresponding magnetic field distribution.
The size of each sample is 101x101. This choice allows a fast training and is suitable for both
indoor and outdoor use. For an indoor application, we can cover an area of 10x10m with a step
resolution of 0.1m. For an outdoor application, we can use the same model to process 100x100m
with a resolution of 1m. Furthermore, this choice makes us able to show the applicability of our

1https://www.comsol.com/
2https://www.comsol.com/release/5.4/livelink-matlab

2

approach with limited GPU resources. However, for industrial use, more advanced GPUs can
be leveraged to train the model with finer resolution.

The full dataset (5GB) is available here: https://drive.google.com/file/d/
189jWIeEXEX0YKXwD3Bs9D7d6C-VZBRiK/view?usp=sharing. Some examples of
a maze-like map are sown in Fig. 1.

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

Figure 1: Some example maps used for the evaluation

3

3 Optimization and Training

The internal structure of MaxConvNet is shown in the Fig. 2 in the paper and Table S2. Max-
ConvNet is implemented as a convolutional auto-encoder trained in a supervised manner. In
the encoder stage, the conductivity map of a single environment is processed by multiple layers
of convolution, max pooling, non linearity and batch normalization. In particular, the encoder
stage consists in five blocks of layers whereby each convolutional layer is followed by a pooling
layer, a rectified linear unit (ReLU) and batch normalization.

In the decoder stage, the received data is iteratively up-sampled using nearest neighbors [1]
and processed using convolutions followed by non-linearity [2] and batch normalization lay-
ers [3]. To avoid overfitting, we use dropout [4] and L2 regularization [5]. Dropout randomly
selects some nodes and removes them along with all of their incoming and outgoing connections
according to an hyperprameter which defines the rate of dropping. L2 regularization updates the
general loss function by adding a regularization term. The cost function with the regularization
term is:

LossMSE =
(φ− φ̂)2

n
+

λ

2n

∑

n

w (9)

where φ is the predicted potential, φ̂ is the potential computed by COMSOL, λ is a hyperpa-
rameter, n is the size of the training batch and w is weights of the network.

The learnable parameters of MaxConvNet are iteratively adjusted with the error backprop-
agation algorithm [6]. The neural network is trained by minimizing the sum of squared errors
loss between COMSOL-computed and predicted magnetic field distributions. The use of a CNN
allows us to considerably reduce the number of learnable parameters using localized and shared
receptive field structures. This allows faster training compared to a conventional deep neural
network. We use the Adam optimizer [7] to adjust the network parameters.

We initialize the weights using the method described in [8]. We implement the network in
Tensorflow [9] and we train on an NVIDIA GTX Gforce 1080 TI GPU (11GB) with a batch
size of 50 samples.

4 Path Following

The proposed planner generates a path as a set of points connected by straight lines. To navigate
the path, a robot shall move from point to point until it reaches the end of the goal. We imple-
ment a modified version of Craig Reynold’s path-following algorithm [10] to ensure smooth
navigation. Algorithm 1 outlines the different steps of the steering behavior: given its current
position and velocity, a robot estimates its future location and projects it on all the path’s seg-
ments. The robot sets its next target to the closest projected point, also called the normal point.
If all the normal points fall outside the path segments then the robot sets its next target to the
lth closest normal point where l is a fixed offset. Given the next target, the robot computes
the velocity command if the distance between the next target and the predicted future location

4

Algorithm 1: Modified Version of Craig Reynold’s path-following algorithm.
Input: A path P = {ψ1, ψ2, ..., ψn}, where ψi is a line segment s.t. ψi = [αiβi], αi is

the segment’s start point and βi is the segment’s end point, n is the number of
segments in the path and r is the path radius.

Output: Velocity command ~V (t+1)

1 Get current position p(t);
2 Get current velocity ~V (t);
3 Predict vehicule’s future location p̂(t+1) ← f(p(t), ~V (t));
4 for ψi in P do
5 Get projection p⊥i of p̂(t+1) on ψi ;
6 if p⊥i /∈ ψi then
7 p⊥i ← βi;
8 end

9 Calculate di =‖
−−−−−→
p̂(t+1)p⊥i ‖;

10 end
11 if p⊥i /∈ ψi∀i ∈ [0..n] then
12 Set target position p(t+1) = p⊥k+l s.t. k = argmini∈[1..n] di where l is a fixed offset;
13 else
14 Set target position p(t+1) = p⊥k s.t. k = argmini∈[1..n] di ;
15 end

16 if ‖
−−−−−→
p̂(t+1)p⊥i ‖> r then

17 calculate velocity command ~V (t+1) =
−−−−→
p(t)pt+1 ;

18 end
19 Strip the travelled distance from the current path P

is greater than the path radius. With a smaller radius r, the robot has to follow the path more
closely; a wider radius allows it to stray more. As it moves, the robot strips the traveled distance
from the path to avoid oscillatory behavior. Table S4 summarizes Reynold’s parameters.

References
[1] D. Han, “Comparison of commonly used image interpolation methods,” Proc. of the 2nd

International Conference on Computer Science and Electronics Engineering, 2013.

[2] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” Proc. of the
fourteenth international conference on artificial intelligence and statistics, pp. 315–323,
2011.

5

[3] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” Proc. International Conference on Machine Learning
(ICML), pp. 448–456, 2015.

[4] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a
simple way to prevent neural networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929–1958, 2014.

[5] B. Bilgic, I. Chatnuntawech, A. P. Fan, K. Setsompop, S. F. Cauley, L. L. Wald, and
E. Adalsteinsson, “Fast image reconstruction with l2-regularization,” Journal of magnetic
resonance imaging, vol. 40, no. 1, pp. 181–191, 2014.

[6] A. Van Ooyen and B. Nienhuis, “Improving the convergence of the back-propagation al-
gorithm,” Neural networks, vol. 5, no. 3, pp. 465–471, 1992.

[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Proc. Interna-
tional Conference on Learning Representations (ICLR), 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” Proc. of the IEEE international conference
on computer vision, pp. 1026–1034, 2015.

[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., “Tensorflow: a system for large-scale machine learning,” OSDI,
vol. 16, pp. 265–283, 2016.

[10] C. W. Reynolds, “Steering behaviors for autonomous characters,” Game developers con-
ference, vol. 1999, pp. 763–782, 1999.

6

Fig. S1. The ratio between the path computed using the real magnetic distribution and the
one computed using the machine predicted distribution: (A) is a different visualization to
Fig. 6: The length ratio variable follows a Normal Distribution N(µ=0.993, σ= 0.005), The
median value is 0.993.

1

A

Fig. S2. (A) Magnetic field distribution computed in a 3D environment using our physics
model. (B) We computed the gradient information based on the 3D distribution shown in
(A). A path is computed for two different locations to the goal (in red). This shows our
approach can be easily extended to handle 3D environments.

2

A

B

Table S1.

Parameters Definition Values

Physical
Properties

sg Goal conductivity constant 1e6

so Obstacles conductivity constant 0

se Environment conductivity constant 100

m0 Free space permeability 12.56e-7

w Frequency 0.05

k2

Kg
2 Goal wave number m0*sg *w*i

ko
2 Obstacle wave number m0*so*w*i

ke
2 Environment wave number m0*se*w*i

Geometric
Properties

Shapeg/sizeg Goal shape/size Circle/radius=0.09m

Shapeo/sizeo Obstacles shape/size Random/Random

Shapee/sizee Environment shape/size Square/side=10m

(xg,yg) Goal local coordinates ([0,10], [0,10])

Meshi
ng

Type Type of the mesh element Triangular

Hmin/
Hmax

Approximate size of the mesh
element

0.3/0.5m

3

Table S1. Physics model: the physical properties of the different mediums in the model
(goal, obstacles and free environment) and their geometrical properties including their
shapes, sizes and the meshing.

Table S2. Conv is a convolutional layer with a specified filter size, stride and number of
filters. Conv1-5 are in the encoder stage, whereas Conv6-11 are in decoder stage. The Batch
Norm column indicates whether Conv is followed by a Batch Normalization layer. The
Nonlinearity column shows whether and what nonlinearity layer is used (preceding the
Batch Norm if Batch Norm is used). NearestUpSample module allows to resize the input
according to the Up_Factor parameter. Pooling is used for subsampling and nearest
neighbor filtering for up sampling.

4

Module Name Filter
size

#Filters/Channels Stride/Up_
Factor

Dropout Pooling

Size/stride

Batch
Norm

Non-
Linearity

Conv1 11x11 32 1x1/- 0.1 1x1/2x2 Y ReLU

Conv2 7x7 64 1x1/- 0.1 1x1/2x2 Y ReLU

Conv3 5x5 128 1x1/- 0.1 1x1/2x2 Y ReLU

Conv4 3x3 256 1x1/- 0.1 1x1/2x2 Y ReLU

Conv5 3x3 512 1x1/- 0.1 1x1/2x2 Y ReLU

NearestUpSample

Conv6

-

3x3 512

-/7

1x1/- 0.1

-

- Y

-

ReLU

NearestUpSample

Conv7

-

3x3 256

-/13

1x1/- 0.1

-

- Y

-

ReLU

NearestUpSample

Conv8

-

5x5 128

-/26

1x1/- 0.1

-

- Y

-

ReLU

NearestUpSample

Conv9

-

7x7 64

-/51

1x1/- 0.1

-

- Y

-

ReLU

NearestUpSample

Conv10

-

11x11 32

-/101

1x1/- 0.1

-

- Y

-

ReLU

Conv11 1x1 1 1x1/- - - - ReLU

Adam’s parameters definitions values

lr Learning rate [0.01,1]

b1 Exponential decay rate for the
first moment estimates

0.9

b2 Exponential decay rate for the
second moment estimates

0.999

e Used to prevent division by
zero

10e-8

Table S3. Adam’s parameters used to compute a feasible path to the goal.

5

