
Real-Time Navigation using Virtual Magnetic Fields

Majda Moussa, Giovanni Beltrame

Abstract— Humans and animals have learned or evolved to
use magnetic fields for navigation. Knowing how to model and
estimate these fields can be used for motion planning. However,
computing the propagation of electromagnetic fields in a given
environment requires solving complex differential equations
with advanced numerical methods, and therefore it is not
suitable for real-time decision making. In this paper, we present
a real-time approximator for Maxwell’s equations based on
deep neural networks that predicts the distribution of a virtual
magnetic field. We show how our approximator can be used
to perform autonomous 2D navigation tasks, outperforming
state-of-the-art navigation algorithms, ensuring completeness,
and providing a near-optimal path up to 200 times per
second without any post processing stage. We demonstrate the
effectiveness of our method with physics-based simulations of
an unmanned aerial vehicle, an autonomous car, as well as real-
world experiments using a small off-road autonomous racing
vehicle. Furthermore, we show how the approach can be applied
to multi-robot systems, video game technology, and can be
extended to 3D problems.

I. INTRODUCTION

Autonomous vehicles have sparked a wide interest in
recent years, and pushed the many advances in software, arti-
ficial intelligence and machine learning. Applications such as
delivery, inspection, and monitoring require intelligent robots
that are capable of navigating autonomously to their destina-
tions, detecting and avoiding obstacles in real-time[1]. This
type of path planning is a challenging problem, especially
for systems that operate in a highly dynamic environment.
Several start-ups (e.g. Embodied Intelligence and Realtime
Robotics) have resorted to dedicated hardware solutions
to solve the path planning problem in real-time, with a
market estimated in the billions of dollars [2]. Although the
path planning problem has some practically demonstrated
solutions such as Waymo self-driving cars [3] and the Skydio
drone [4], these implementations are not necessarily optimal,
they require precise external positioning (e.g. GPS), high
computational performance, and have a high energy cost.

In the last decade, a massive number of real-time path
planning algorithms have been proposed, studied, and dis-
cussed [5], [6]. The most common approaches are graph-
based methods [7], sampling-based planners [8], artificial
potential fields [9], and heuristic methods [10].

In graph methods, the environment is represented by a
grid where the robot can only move between adjacent grid
cells and can take position only in discrete locations (grid
nodes). Standard solutions in this category include Dijkstra’s
algorithm and A* [7]. A major drawback of graph methods is

Majda Moussa and Giovanni Beltrame are with the Department of
Computer and Software Engineering, École Polytechnique de Montréal,
Québec, Canada giovanni.beltrame@polymtl.ca

that they become computationally expensive with larger en-
vironments and higher resolutions. To address this problem,
many solutions use a sampling approach: originally, Rapidly-
Exploring Random Trees (RRT) [11] exploits randomness to
quickly explore a large search space with iterative refinement.
Variants of RRT added probabilistic guarantees that a path
would be found if it existed – e.g. RRT* [12], RRT*-
smart [13] – as well as real-time performance – RRTX [14],
ERRT [15], CL-RRT [16], and RT-RRT* [17]. However,
these solutions are far from optimal: guarantees are only
asymptotic (i.e. assuming we have infinite computation time)
and real-time solutions trade off accuracy by interleaving
planning and acting on partial plans. More recent works [18],
[19] resort to neural networks to generate paths using graph-
based planners as “training experts”. Although these ap-
proaches enable fixed-time path generation, they have the
same limitations as the algorithms they try to imitate.

To solve this issue, we found inspiration from the natural
world. Evolution has addressed the problem using existing
features of our planet: animals have long since learned to
take advantage of Earth’s magnetic field to navigate their
environment. Various species, ranging from birds and mam-
mals to reptiles and insects, are able to sense the magnetic
field and, along with sunlight, use it for navigation [20].
Wu and Dickman [21] show that some neurons in animal
brains encode information on the magnetic field’s direction,
intensity and polarity. This reveals that the animals have a
magnetic sense that provides them with an internal global
positioning system and a magnetic compass for directional
heading. This natural skill allows animals to navigate towards
their destination without getting lost.

In essence, knowing how the magnetic field propagates,
humans and animals alike can use the field as a map.
For instance, Earth’s magnetic field is well modeled and
studied [22], [23], [24], and currently used for satellite
navigation [25]. This is possible because magnetic field
model [26], [27] does not have local maxima [28] and its
gradient can be used for global navigation.

While we can use an existing magnetic field (e.g. Earth’s)
for outdoor navigation (e.g. satellite; aircrafts), we surmise
that a robot could navigate any kind of environment by con-
structing a model of the magnetic field, i.e. a virtual magnetic
field, and following its gradient. By properly selecting the
conditions in which the virtual field propagates, one can have
no local maxima, which makes the gradient path optimal
and guarantees completeness –that is, if a path exists, it
will be found. This operation requires solving Maxwell’s
equations to determine the value of the virtual magnetic
field across a simplified model of the environment. However,

solving Maxwell’s equations is complex and computationally
expensive, and usually demands numerical simulations such
as finite elements or finite differences methods [29]. The
computational resources needed to run these simulations in
real-time far exceeds the capabilities of a mobile robot or
autonomous vehicle. Hussein and Elnagar [30] attempted the
use of a magnetic potential field for path planning using the
finite differences method. Their work showed promise, but
they were not able to achieve real-time performance.

In this paper, we present a data-driven solver of Maxwell’s
equations that can compute a virtual magnetic field in any
2D environment up to 200 frames per second, making our
solution suitable for path-planning in highly-dynamic and
time-varying environments. We use an auto-encoder con-
volutional neural network exclusively trained in simulation
that can predicts the magnetic field distribution in unknown
environments with high accuracy. We show how this method
is readily applicable to many navigation tasks such as out-
door/indoor path planning and gaming.

II. APPROACH

Our main result is a learning-based path planning system
that provides near-optimal results for 2D environments. In-
terestingly, our path planner is not trained on existing path
planners or other kinds of oracles, but rather on the well-
known physics of the electromagnetic field.

Electrical conductivity, the ability of a medium to carry
electrical currents, is strongly related to the magnetic dis-
tribution in a given environment [31]. Intuitively, one can
describe an environment as a conductivity map to compute
the propagation of the magnetic field. However, the relation
between the environment’s conductivity and the propagation
of the magnetic field is often indirect and strongly non-
linear [32]. Convolutional neural networks, CNNs [33], are
known to be very powerful approximators for arbitrary
non-linear functions [34]. Often used in computer vision,
CNNs work by learning patterns and making decisions at
the level of pixels, based on local spatial information. A
vast range of computer vision problems, the likes of image
segmentation [35], [36], [37] and pixelwise prediction [38],
have been solved using CNNs.

We extend this idea and create a deep learning framework
that approximates the relationship between the conductivity
of an environment and its corresponding magnetic field dis-
tribution. Given that the behavior of the magnetic field is well
understood and easily simulated, we build an (arbitrarily)
large dataset of conductivity maps and their corresponding
field distributions using a commercial simulator COMSOL1.
We train a CNN on this dataset and obtain an approximator of
the magnetic field distribution. We use the magnetic field to
generate a feasible path to any set point in the environment.
The overall framework of our method is shown in Fig. 1.

The generation of conductivity maps is a key feature: we
use 2D images where each pixel represents the conductivity
value of a corresponding discrete area of the environment

1https://www.comsol.com/

10 m

1
0
 m

Geometrical Model and Mesh

Environment Conductivity

Solving Maxwell Equations

Obstacles

Goal

Environment

LiveLink MATLAB

Conductivity Maps Predicted Magnetic Fields

A

B

MaxConvNet

Maxwell Approximator

10008006004002000

10008006004002000

Finite Element Solution

(a.u.)

(a.u.)

Fig. 1. Deep learning framework for solving Maxwell’s equations:
(A) Schematic representation of the data collection process (conductivity
data maps and the corresponding magnetic field distributions). (B) The
conductivity images from multiple environments are used to train a deep
neural network using the error backpropagation algorithm. The trained
network accurately predicts the corresponding magnetic solution when
environment conductivity images are shown.

(of arbitrary size, chosen according to the desired accuracy).
Studying the simplest practical form of this problem, we
encode obstacles (anything that cannot be traversed) with
zero conductivity (σo = 0), while we assign the highest
conductivity to a goal location (σg). For the rest of the
environment, we assign conductivity values to each pixel
according to its distance to the goal. For every pixel p(x, y),
the conductivity σe(x, y) is defined as:

σe(x, y) =
c√

(x− xg)2 + (y − yg)2
(1)

where xg and yg are the goal coordinates and c is a fixed
parameter, the environment conductivity constant.

We transform the conductivity map into a triangular mesh
(the geometrical model and mesh in Fig. 1A) and compute
the magnetic field distribution via finite elements [29]. Please
refer to Sections 1 and 2 in the supplementary material [39]
for more details about magnetic field computation.

III. TRAINING

We train our neural network, shown in Fig. 2 and called
MaxConvNet, as a supervised pixelwise regressor using the
conductivity data as input and the magnetic distributions as
their corresponding ground truth (see Fig. 1B). Pixelwise re-
gression is similar to the well-known pixelwise classification

0 200 400 600 800 1000 0 200 400 600 800 1000

Input Output
Encoder Stage Decoder Stage

Conv

Max Pooling

ReLU + Batch Norm

Nearest Neighbour Upsampling

ReLU

Magnetic FieldConductivity Map

(a.u.)(a.u.)

Fig. 2. MaxConvNet structure: When a conductivity image of an environment is taken as input, the network first processes the image through an encoder
stage (five rounds of convolution, ReLU nonlinearity, and pooling layers). Then, a decoder stage follows with 5 rounds of up sampling, convolution, and
ReLU nonlinearity. Dropout and L2 regularization are used to avoid overfitting. We compute ground truth magnetic field distributions using a commercial
simulator (COMSOL) to obtain the loss function. See supplementary material [39] Section 3 and Table S2 for details on the architecture.

problem [40], however, each pixel is assigned to a continuous
value.

A well-trained neural network learns the general relation
between input and output data and can accurately predict
never-seen-before inputs. We tested MaxConvNet on new,
randomly generated environments and compared the predic-
tion with the ground truth magnetic field distribution per
pixel. Fig. 3A depicts the loss curves of both training and
testing phases: the testing loss curve matches the slope of
the training curve, which means that the model is able to
generalize well on the testing dataset.

We use a relative error metric errs(x, y) at the pixel level
to assess the accuracy of the model for each sample input s:

errs(x, y) =
|φs(x, y)− φ̂s(x, y)|

φs(x, y)
(2)

where φ̂s is the predicted magnetic field for the input sample
s and φs is the ground truth generated with a commercial
simulator. The average relative error per-pixel for a batch
of n samples is defined as the mean value of the relative
per-pixel error. In logarithmic scale (decibels):

erravg(x, y) =

∑
s errs(x, y)

n

∣∣∣∣
dB

(3)

Fig. 3B shows the relative error of MaxConvNet for the
testing dataset: less than -25dB for almost every pixel. This
shows that the model is able to learn the relationship between
magnetic field and conductivity, and is able to generalize
to unseen samples. An attentive reader might notice that
the average relative error around the center of the map is
lower (i.e., below -35dB) than the error at its boundaries.
This can be explained by the structure of our dataset, which
places most of the obstacles far from the map boundaries,
meaning that MaxConvNet is especially good at determining
the magnetic fields around obstacles.

Fig. 3C shows the performance of MaxConvNet for three
sample scenarios with increasing complexity. Fig. 3C.i is a
simple case where the environment is free of obstacles. The

Training Loss

Testing Loss

Epochs

L
o

s
s
 (

a
.u

.)

0 200 400 600 800 1000

50

100

150

200

250

300

350

0 20 40 60 80 100

20

40

60

80

100

0

-10

-15

-20

-25

-30

-35

-40

A B

0

100

0

100

0

100

0 50 100

0 50 100

0 50 100

0 50 100

0 50 100

0 50 100

0

100

0

100

0

100

1000

800

600

400

200

0

1000

800

600

400

200

0

0 50 100

0 50 100

0 50 100

0

100

0

100

0

100
20

0

-20

-40

-60

-80

G
ro

u
n

d
 T

ru
th

 (
a
.u

.)
M

a
x
C

o
n

v
N

e
t

(a
.u

.)
E

rr
o

r
M

a
p

 (
d

B
)

C

 i ii iii

505050

5050 50

50 50 50

Relative Error Map (dB)

Fig. 3. Performance of MaxConvNet: (A) We use the mean square
error to train MaxConvNet. The testing loss decreases conjointly with the
training loss. The network is able to generalize to unseen environments.
(B) We calculate the average relative error per pixel for the testing set
(4000 samples). The average relative error is under -25dB per pixel. (C
i to iii) depict three environment scenarios with increasing complexity.
MaxConvNet (middle) is able to reproduce the ground truth (top). The error
map (bottom) shows the relative error per pixel (less than -20dB for almost
all pixels in the map). The x-y axes of each sub-figure refer to the abstract
positions of pixels in the maps i.e., in [0, 100] each dimension.

0

100

0 50 100

0

100

0 50 100

0

100

0 50 100

0

100

0 50 100

0

100

0 50 100

0

100

0 50 100

10008006004002000

505050

50 50 50

A B C

D E F

(a.u.)

Fig. 4. Gradient-based path: (A to F) The gradient information of
machine-predicted magnetic fields can be used to compute a continuous path
from a starting point to a goal position. The predicted magnetic distribution
is agnostic to local maxima problems as it is based on Maxwell’s equations
for the magnetic field. The x-y axes of each sub-figure refer to the abstract
positions of pixels in the maps i.e., in [0, 100] each dimension.

relative error map (bottom) shows that MaxConvNet is able
to reproduce the ground truth (top).

Fig. 3C.ii and Fig. 3C.iii present more complex cases
where the environment is cluttered with obstacles. The error
maps show an error rate less than -20dB for almost all pixels
in the scenes. Overall, the model is able to learn the obstacle
positions (i.e. with an error rate less that -80dB) and predict
the correct magnetic field distribution.

IV. PATH PLANNING

To compute a feasible path from the predicted distribution,
we have implemented Adam’s algorithm [41]. Assuming a
robot acting in discrete time steps, at each time step the
algorithm takes the gradient of the predicted field as well as
the current position of the robot and returns a path to the
goal (see supplementary material [39], Section 4 and Table
S3 for details). The algorithm does not need any information
about the goal since it is already encoded in the gradient
information given as input.

Fig. 4 shows the computed path for some scenarios. The
length of the path depends on the learning rate parameter
that controls how much to change the position of the robot
in response to the estimated gradient each time the path
is updated towards the goal. Fig. 5 shows that the higher
the learning rate the longer the path. An excessively large
learning rate results in a coarse exploration of the gradient
information and consequently generate a sub-optimal set of
positions towards the goal. A too small learning rate could,
in turn, lead to a long optimization process that might get
stuck. To avoid these issues, we set the learning rate to 0.01.

Fig. 6 compares the paths computed on 4000 machine-
predicted distributions and their ground truth in terms of
path length. The ground truth path is produced from a strictly
monotonic gradient [42], implying it is the optimal path [43].

Fig. 5. Impact of Adam’s learning rate on the path length. The higher the
learning rate the longer the path

Fig. 6. The ratio between the path computed using the real magnetic distri-
bution and the one computed using the machine predicted distribution: the
length ratio variable follows a Normal Distribution N(µ=0.993, σ=0.005),
The median value is 0.993.

The average ratio between optimal and the MaxConvNet-
computed path length is 0.993± 2.97e-05 which confirms
the high accuracy of MaxConvNet in predicting the correct
magnetic distributions. The main advantage of our approach
is that it produces complete paths without local maxima,
a problem present in other potential fields methods [9]
that can cause a robot to get stuck. Fig. 4 shows some
classic examples where planners can get stuck, but where
MaxConvNet can find a path to the goal location.

V. EXPERIMENTAL RESULTS

We used MaxConvNet for the autonomous navigation of
flying and wheeled robots. We used realistic models of the
Parrot AR.Drone 2.0 quadcopter and of a sport utility vehicle
(SUV) in a high-fidelity visual and physical simulator, Air-
Sim [44]. Fig. 7 depicts the simulation setup. Fig. 9A shows
two simulated scenarios where a quadcopter and an SUV
with a realistic LiDAR model, controlled by MaxConvNet,
are making their way to a goal position while avoiding
obstacles. Fig. 9A also presents the reconstructed maps of
the virtual environments.

Environment Model

Python Client

Sensor Models

Controller

API Layer

Vehicle Model

Physics Engine

Rendering Engine

AI Path PlannerMotion Planner

Force, Torque, Gravity, Air Density, Pressure, Temperature

KinematicsSensor Data

Perception Data

F
o

rc
e
,
T

o
rq

u
e

Desired State

Estimated State

P
o

s
e

S
e
n

s
o

r
D

a
ta

Lidar Data

Network

Point Cloud

Predicted Path

A
ir

s
im

 P
lu

g
in

Actuator Signals

Fig. 7. AirSim physics-based simulation: AirSim server computes the
physics of the vehicle model and simulate the sensors and the environment
to mimic real-world behaviors (such as sensor drift, position errors). On
the client side, MaxConvNet runs inside the AI path planner module at
100 fps. The AI path planner requests lidar data and estimated kinematics
from the server and produces a feasible path. The motion planner converts
the computed path into velocity commands using a modified version of
Reynold’s algorithms.

Moreover, we have implemented a game-based scenario
where an AI tries to catch a human-controlled player using
MaxConvNet in a highly dynamic environment. The position
of the player is encoded as the goal and used along with the
obstacle information by the AI to predict a feasible path to
track the player (see the attached video for an example).

Furthermore, we use MaxConvNet running on a NVIDIA
Jetson Nano computing board to control a Traxxas Stampede
rover equipped with Ydlidar X4 lidar and a PixRacer au-
topilot (see Fig. 8) for the outdoor experiments in Fig. 9B.
The autopilot uses GPS information along with its inertial
measurement unit to estimate its current position.

A. Comparison with RRT* and A*

We compare MaxConvNet, RRT* [13], and A* [45] in
terms of path cost and runtime. A* provides an optimal
path, and performs well on small maps. However, its runtime
depends on the map and the position of the initial and goal
locations, and A* scales exponentially with map size, which
makes it less than ideal for real time operation. Some real-
time variants exist, but they compute partial paths that are
optimal only in a static environment. RRT* is widely used in
robotics, can be computed in fixed time, and tends towards
the optimal solution.

Qualitatively, Figs. 10A and 10B show two scenarios
where the path computed by MaxConvNet is shorter and
smoother than the one produced by RRT*. The quality of
the path generated by RRT-based approaches depends on
the number of nodes (a parameter). The denser the tree, the
smoother the path. However, this significantly slows down
the algorithm. In Fig. 10A.ii, RRT* takes 30 seconds to
compute a 125-meter path using 1000 nodes, while using
3000 nodes in Fig. 10A.iii leads to a path length of 103m,

GPS

Lidar

Thrust (PWM)

Steering

Nvidia Jetson Nano
Traxxas Stampede

Lidar Sensor

AI Path Planner

MavROS

Motion Planner

V
e
l.
 C

o
m

m
a
n

d
s

P
o

s
.
&

 V
e
l.
 E

s
ti

m
a
te

s

Path

P
o

in
t

C
lo

u
d

Rover

Controller

Fig. 8. Experimental setup: We set up a wheeled platform using Traxxas
stampede frame with a servo motor in the front of the vehicle for steering
and a throttle motor at the back connected to the ESC (electronic speed
control VXL). We used YdLidar X4 to collect 2D environment data and
run our path planner on an NVIDIA Jetson Nano.

but at the expense of 217 seconds of computation time.
For the same scenario, MaxConvNet was able to compute a
shorter path in only 0.07 seconds, and similarly for Fig. 10B.
Overall, MaxConvNet can compute a shorter path 400 times
faster than RRT* with 1000 nodes.

Quantitatively, we compare RRT* (with 300 and 1000
nodes), MaxConvNet, and A* over 10 different environments
running on an Intel i7 M620 running at 2.67GHz. Fig. 10C
shows that the path length for MaxConvNet is always shorter
than RRT*, very close to A*, and Fig. 10D shows that the
model has a constant, very high speed, 400 times faster
than RRT* with 1000 nodes, and up to 20 times faster than
A* (times include the full pipeline, from sensor reading
to path generation). Note that, as shown in the following,
MaxConvNet can be run on GPUs, increasing the speed by
orders of magnitude (see Table I), which is more difficult to
do for RRT* and A*.

We can conclude that MaxConvNet is more efficient than
state-of-the-art sampling-based approaches: it is faster, finds
near-optimal paths, has constant runtime, and its results do
not depend on scene complexity or path length.

B. Performance on Different Computers

We have conducted a statistical study to investigate the
performance capabilities of MaxConvNet on different com-
puters. We used a set of 1000 input environments on the most
common Nvidia Graphical Processing Units GPUs–namely
Jetson NANO, Jetson TX2, GTX 1050, GTX 1060, GTX
1080 Ti–, as well as on a Raspberry Pi 3 and a standard
Intel i7-8750H. Table I depicts the minimum, maximum and
mean values of the execution time of our model on the

TABLE I
MAXCONVNET’S FULL PIPELINE EXECUTION TIME ON DIFFERENT PLATFORMS ON A SET OF 1000 SAMPLES

Platforms Nvidia GPUs CPUs

Jetson Nano Jetson TX2 GeForce
GTX1050

GeForce
GTX 1060

GeForce
GTX 1080

Ti
RPI 3 Intel i7

MaxConvNet Execution Time (s)
Min 0.0920 0.0455 0.0132 0.0086 0.0045 1.901 0.039
Max 0.1306 0.298 0.0199 0.019 0.006 2.885 0.081
Mean 0.1065 0.074 0.0164 0.0093 0.005 1.982 0.033

0

150

300

Predicted Target

Estimated Position
Lidar Data

Virtual Environments Reconstructed Maps

0

25

50

Predicted Target

Estimated Position
Lidar Data

75

-25

Real Environment

0

2.5

5

Predicted Target

Estimated Position
Lidar Data

7.5

Reconstructed Map

10

12.5

-2.5

0 2.5 5 7.5 10 12.5-2.5

0 25 50 75-25

0 5025-25

A

B

Y (m)

X
 (

m
)

X
 (

m
)

X
 (

m
)

Y (m)

Y (m)

Fig. 9. AirSim physics-based simulations and real-world experiment:
(A) presents two virtual environments in AirSim: MaxConvNet predicts the
next path to follow at 100 fps. The lidar data captured by the drone and
the ground vehicle as well as the predicted path and the estimated positions
has been superimposed to reconstruct the environments. (B) presents a real-
world environment. MaxConvNet predicts the next path to follow at 7 fps
(limited by the lidar performance). Obstacle data is collected using a Ydlidar
X4. Lidar data from different frames are superimposed along with predicted
future positions and estimated positions to reconstruct the map.

aforementioned platforms. Results show that MaxConvNet
can run at up to 15 Hz on an embedded computer (the
Jetson TX2) and up to 200 Hz on an advance GPU (the
GTX 1080 Ti). It is worth noting that our model prototype
is implemented in Python, and we expect better performance
with a more optimized implementation.

DISCUSSION AND CONCLUSIONS

We propose an AI based approximator of Maxwell’s
equations that enables their use in applications with tight
resource constraints. We also show how this new strategy

A

B

 i ii iii

 i ii iii

C D

0

20

40

60

80

100

120

140

160

180

200

C
os

t(
m

)

Environments

RRT*: 3 000 n odes

RRT*: 1 000 nodes

DRMF

A*

69 75 67 71 70 71 69.9 68.7 75 71

50

500

5000

50000

R
un

�
m

e(
m

s)
Environments

RRT*: 3 000 n odes

RRT*: 1 000 n odes

DRMF

A*

Fig. 10. MaxConvNet vs RRT*: (A i) MaxConvNet runtime = 0.07s,
cost = 99.27m, (A ii) RRT* number of nodes 1000, runtime = 30.12s,
cost 122.01m, (A iii) RRT* number of nodes 3000, runtime = 217s,
cost 111.33m, (B i) MaxConvNet runtime = 0.07s cost 75.17m, (B ii)
RRT* number of nodes 1000, runtime = 27.45s, cost 104.24m, (B iii)
RRT* number of nodes 3000, runtime = 329s, cost 84.64m. We compared
MaxConvNet and RRT* in 10 different environment (C) Cost comparison,
(D) Runtime comparison.

can be applied to robots to perform navigation tasks. This
application is of wide interest as it allows a low-cost navi-
gation in a highly dynamic and unknown environment, and
ensures optimal paths in complex real world scenarios with
static and dynamic obstacles.

MaxConvNet works by automatically recognizing the dis-
tribution of a virtual magnetic field in a 2D environment de-
fined as a conductivity map. On top of MaxConvNet, we use
an optimization algorithm to compute a feasible path given
the gradient information of the magnetic distribution. The
attentive reader might have realized that the path generated
by MaxConvNet does not take into account the kinematic
constraints of the robot, but these can be taken into account
when executing the optimization algorithm for the generation
of the path.

Results show that MaxConvNet makes correct predictions
and avoids the problem of local maxima. In addition, Max-
ConvNet outperforms state-of-the-art navigation algorithms
by ensuring completeness and providing an optimal path in
real time. Additionally, the present method can be readily
extended to other navigation problems, such as flocking or
pursuit (see attached video).

The neural network presented in this paper can be an
inspiration to understand how the problem of visual path-
planning in a dynamic, unknown environment can be solved
efficiently by a neural architecture, given a simple model of
the environment. Most importantly, the environment model
and conductivity could be modified to account for the dy-
namics of the robot being considered to achieve specific
trajectories such as those needed for drone or car racing. For
example, adding magnetic shells to the obstacles can shape
the magnetic field to have smoother turns, thus modelling
limitations in turn radius for the vehicle. These implicit
optimizations likely come at no performance cost: the map,
model, and inference time stay the same, and only require
additional training. We plan to study magnetic shaping in
future work.

The low computational cost of MaxConvNet allows im-
plementations on small, low-cost, single-board computers
as the Jetson Nano or the Raspberry Pi, paving the way
for pervasive robot applications. In addition, one can train
the system using exclusively simulation data leading to
straightforward implementation on physical robots.

MaxConvNet can be extended to 3D to enable a more
efficient navigation for flying and under-water robots. The
magnetic field distribution of a 3D environment computed
using our physics-based model and the gradient information
that can be used to compute a free path from any start-
ing position to the goal (see supplementary material [39],
Fig. S2). In addition, the network can be trained with an
arbitrarily large number of environment data with different
obstacle shapes and the performance can be further improved
increasing the environment resolution (i.e. 512x512).

REFERENCES

[1] F. Bonin-Font, A. Ortiz, and G. Oliver, “Visual navigation for mobile
robots: A survey,” Journal of intelligent and robotic systems, vol. 53,
no. 3, pp. 263–296, 2008.

[2] D. Sorin and G. Konidaris, “Enabling faster, more capable robots
with real-time motion planning,” 2018, https://spectrum.ieee.org/
automaton/robotics/robotics-software/enabling-faster-more-capable-
robots-with-real-time-motion-planning, last accessed on 2019-10-14.

[3] C. Fisher, “Waymo’s fully-automated shuttles are picking up rid-
ers around phoenix,” 2019, https://www.engadget.com/2019/10/28/
waymo-rider-only-autonomous-taxis-phoenix/, last accessed on 2019-
10-24.

[4] F. Jon, “Skydio’s station lets self-flying drones work around the
clock,” 2019, https://www.engadget.com/2019/10/16/skydio-2-dock-
autonomous-drone/, last accessed on 2019-10-24.

[5] M. N. Rastgoo, B. Nakisa, M. F. Nasrudin, A. Nazri, and M. Zakree,
“A critical evaluation of litterature on robot path planning in dynamic
environment,” Journal of Theoretical & Applied Information Technol-
ogy, vol. 70, no. 1, 2014.

[6] M. Mohanan and A. Salgoankar, “A survey of robotic motion planning
in dynamic environments,” Robotics and Autonomous Systems, vol.
100, pp. 171–185, 2018.

[7] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review
of motion planning techniques for automated vehicles.” IEEE Trans.
Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135–1145,
2016.

[8] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” Ieee access, vol. 2, pp. 56–77, 2014.

[9] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Autonomous robot vehicles, pp. 396–404, 1986.

[10] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic ap-
proaches in robot path planning: A survey,” Robotics and Autonomous
Systems, vol. 86, pp. 13–28, 2016.

[11] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[12] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[13] F. Islam, J. Nasir, U. Malik, Y. Ayaz, and O. Hasan, “RRT*-
smart: Rapid convergence implementation of RRT* towards optimal
solution,” Mechatronics and Automation (ICMA), 2012 International
Conference on, pp. 1651–1656, 2012.

[14] M. Otte and E. Frazzoli, “RrtX : Real-time motion planning replanning
for environments with unpredictable obstacles,” Algorithmic Founda-
tions of Robotics XI, pp. 461–478, 2015.

[15] J. Bruce and M. M. Veloso, “Real-time randomized path planning for
robot navigation,” Robot Soccer World Cup, pp. 288–295, 2002.

[16] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Transactions on Control Systems Technology, vol. 17,
no. 5, pp. 1105–1118, 2009.

[17] K. Naderi, J. Rajamäki, and P. Hämäläinen, “Rt-rrt*: a real-time path
planning algorithm based on rrt,” Proc. of the 8th ACM SIGGRAPH
Conference on Motion in Games, pp. 113–118, 2015.

[18] M. J. Bency, A. H. Qureshi, and M. C. Yip, “Neural path planning:
Fixed time, near-optimal path generation via oracle imitation,” arXiv
preprint arXiv:1904.11102, 2019.

[19] T. Dang, S. Khattak, C. Papachristos, and K. Alexis, “Anomaly
detection and cognizant path planning for surveillance operations
using aerial robots,” International Conference on Unmanned Aircraft
Systems (ICUAS), pp. 667–673, 2019.

[20] D. Barrie, Supernavigators: Exploring the wonders of how animals
find their way. The Experiment, 2019.

[21] L.-Q. Wu and J. D. Dickman, “Neural correlates of a magnetic sense,”
Science, vol. 336, no. 6084, pp. 1054–1057, 2012.

[22] J. Davis, “Mathematical modeling of earth’s magnetic field,” Technical
Note, Virginia Tech, Blacksburg, 2004.

[23] S. Edwards, C. Parnell, L. Harra, J. Culhane, and D. Brooks, “A com-
parison of global magnetic field skeletons and active-region upflows,”
Solar Physics, vol. 291, no. 1, pp. 117–142, 2016.

[24] W. H. Campbell, Earth magnetism: a guided tour through magnetic
fields. Elsevier, 2001.

[25] G. Huang, B. K. Taylor, and D. Akopian, “A low-cost approach of
magnetic field-based location validation for global navigation satellite
systems,” IEEE Transactions on Instrumentation and Measurement,
2019.

[26] P. Huray, Maxwell’s Equations. Wiley, 2009, vol. 9780470542767.
[27] K. Yosida, Theory of magnetism, ser. Springer series in solid-state

sciences. Springer-Verlag Berlin Heidelberg, 1996, vol. 122.
[28] J. R. Cary and S. G. Shasharina, “Omnigenity and quasihelicity in

helical plasma confinement systems,” Physics of Plasmas, vol. 4, no. 9,
pp. 3323–3333, 1997.

[29] O. C. Zienkiewicz, R. L. Taylor, P. Nithiarasu, and J. Zhu, The finite
element method. McGraw-hill London, 1977, vol. 36.

[30] A. M. Hussein and A. Elnagar, “Motion planning using maxwell’s
equations,” Intelligent Robots and Systems, vol. 3, pp. 2347–2352,
2002.

[31] J. G. Van Bladel, Electromagnetic fields. John Wiley & Sons, 2007,
vol. 19.

[32] P. G. Huray, Maxwell’s equations. John Wiley & Sons, 2011.
[33] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep

learning for visual understanding: A review,” Neurocomputing, vol.
187, pp. 27–48, 2016.

[34] X. Guo, W. Li, and F. Iorio, “Convolutional neural networks for
steady flow approximation,” International Conference on Knowledge
Discovery and Data Mining, pp. 481–490, 2016.

[35] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

[36] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” International Conference
on Medical image computing and computer-assisted intervention, pp.
234–241, 2015.

[37] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–
848, 2017.

[38] M. I. Meyer, A. Galdran, A. M. Mendonça, and A. Campilho, “A
pixel-wise distance regression approach for joint retinal optical disc
and fovea detection,” International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 39–47, 2018.

[39] M. Moussa and G. Beltrame, “Supplementary material,” https://
mistlab.ca/papers/MaxConvNet, 2021, [Online].

[40] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” Proc. of the IEEE conference on computer
vision and pattern recognition, pp. 3431–3440, 2015.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” Proc. International Conference on Learning Representations
(ICLR), 2015.

[42] M. N. Ã-zisik, M. N. Özısık, and M. N. Özışık, Heat conduction.
John Wiley & Sons, 1993.

[43] N. Endou, K. Narita, and Y. Shidama, “The lebesgue monotone
convergence theorem,” Formalized Mathematics, vol. 16, no. 2, pp.
167–175, 2008.

[44] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” Field and
service robotics, pp. 621–635, 2018.

[45] S. Russel, P. Norvig et al., Artificial intelligence: a modern approach.
Pearson Education Limited, 2013.

