
This supplementary material is organized in two sections.
In Section I we provide details on how group outliers are gen-
erated and present an in-depth analysis of the experimental
results for group outliers. In Section II we perform parameter
study on the effect of the penalty scaling for pro-odometry
clusters.

I. EFFECT OF OUTLIERS’ STRUCTURE

Originated from Sunderharf’s work [1], research on outlier
mitigation [2], [3], [4] has commonly injected two types
of outliers into clean datasets for performance validation:
random outliers, where singular outliers are generated by
randomly choosing a pose-pose pair and no inner structure
among outliers are enforced1; and group outliers, where a
specific inner structure is enforced on the outliers so that
within one group, all the edges are consistent with each other
topologically. We also used the script from [1] to generate
random singular outliers. However, the proposed group out-
lier generation scheme has three fundamental issues:

• It produces all outliers in groups. This is equivalent
of assuming all outliers during the whole trajectory
are generated from perceptual aliasing instances that
produce mutually-consistent outliers, ignoring random
singular outliers entirely.

• All groups have the same number of outliers. This
is equivalent of specifying all the perceptual aliasing
instances to span the same number of poses.

• With each edge referred as (from, to), the from poses
of the edges in one group are in strict consequential
order. So are the to poses. An example is shown in
Fig.1a.

Based on our observations, these three conditions are
rarely true in reality. Group outliers exist together with
random singular outliers most of the time, and individual
perceptual aliasing instances natually produce different num-
ber of mutually-consistent outliers. To improve and simulate
perceptual aliasing in a more realistic way, we design a new
scheme for group outliers generation, shown in Algorithm
1. Instead of constraining the number of loop closures
in all groups to be one constant, our method produces a
mixture of singular outliers and group outliers of different
sizes. In addition, instead of strictly consequential edges, we
randomly generate the pose-pose pair within a specific range
and inject a noise level of ±1 pose. The differences between
group outliers from [1] and our methods are illustrated in
Fig. 1.

With our carefully designed group outlier generation
schemes, we conduct experiments on datasets with 10%,
20%, 30%, 40%, 50% outliers. Experimental results on
CSAIL are shown in Fig. 2. OFCC performed much worse
than other methods by accepting more outliers. SC (σs = 1),
DCS and CPS had stable performance regardless of the
number of outliers. And CPS achieved the lowest ATE by

1Note that inner structure can still form, since one randomly generated
singular outlier can be consistent with some other randomly generated
singular outliers. The emphasis here is that it is not enforced.

Algorithm 1: group outlier generation

Input: The maximal group range max range, the total
number of loop closures, n loops

Output: Outlier list
1 loop counter = 0
2 while loop counter < n loops do
3 Randomly generate a number a ∈ [1,max range]
4 if a == 1 then
5 Randomly generate a singular loop closure and

append to the outlier list
6 loop counter ++

7 else
8 Randomly generate a number b ∈ [2, a]
9 Randomly generate a pose-pose pair (x, y) as

the center of this perceptual aliasing instance
10 counter = 0
11 while counter < b do
12 Randomly draw a pose x′ from a uniform

distributiontion of which the mean is x,
and bounded by [x− a/2, x+ a/2]

13 Determine pose y′ from
y′ = x′ − x+ y + random[−1, 1]

14 Append [x′, y′] into the outlier list
15 counter ++

16 loop counter = loop counter + b

(a) group outliers from [1] (b) group outliers from our method

Fig. 1: Comparison between different group outlier generation methods:
blue lines indicate the trajectory, other lines indicate the injected outliers
with each different color representing a different groups of outliers

rejecting most outliers and also accepting most inliers. For
DCS, different Φ value didn’t affect the ATE significantly.
SC (σs = 0.1) performed better than SC (σs = 1) when the
number of outliers is low, but soon deteriorated by accepting
more outliers as the number of outliers is higher than 30%.

Experimental results on the Manhattan datasets are shown
in Fig. 3. Both OFCC and SC (σs = 0.1) failed due to
accepting outliers even at 10% outliers. And in doing so,
OFCC rejected a lot more inliers then other methods. Both
DCS (Φ = 1) and DCS (Φ = 5) performed reasonably
when the number of outliers were low, but soon deteriorated
as the number of outliers increased. SC (σs = 1) achived
the lowest ATE on this configuration, rejecting all outliers
while still accepting most of the inliers. CPS performed as
well as SC (σs = 1) at low number of outliers, and its
performance slowly deteriorated as the number of outliers
increased. We note that this is the only configuration in
our experimental setups that CPS performed slightly worse
than another method, although we can still observe that it
avoided accepting loop closures that would cause large global



Fig. 2: Comparison of different outlier mitigation methods on CSAIL with group outliers

Fig. 3: Comparison of different outlier mitigation methods on Manhattan with group outliers

Fig. 4: Comparison of different outlier mitigation methods on Intel with group outliers

distortion: comparing its performance and DCS, both DCS
(Φ = 1) and DCS (Φ = 5) accepted less outliers than CPS,
but had much higher ATE.

Experimental results for the Intel dataset are shown in
Fig.4. SC (σs = 1) failed by rejecting too many inliers while
SC(σs = 0.1) performed significantly better by making good
compromise. DCS (Φ = 1) performed well untill the number
of outliers is at 50%, while DCS (Φ = 5) is not affected.
OFCC and CPS performed consistently well regardless of
the number of outliers.

Comparing the experimental results presented here and
those for random singular outliers, we note that the outliers’
structure affects the performance of state-of-the-art methods

in various ways: OFCC performed significantly worse on
CSAIL with group outliers than with random outliers. SC
(σs = 0.1) performed significantly differently for the group
outliers and random outliers on the CSAIL dataset, making
parameter tuning even more difficult. Our proposed method
not only performed better or comparable with other methods
at their best parameters, but also exhibited similar behaviors
for outliers with different structures. Its performance deteri-
orated gracefully as the number of outliers increased.



II. EFFECT OF PENALTY SCALING ON PRO-ODOMETRY
CLUSTER

As explained in the paper, we treat the pro-odometry
clusters differently by decreasing

√
σi by a factor 10. Here

we conduct an ablation study on this strategy to examine
its usefulness. We refer to this parameter as σip here to
differentiate it from the variance of the prior constraints for
against-odometry clusters, which is set to 1.0 at all times.

We vary the parameter value: σip ∈
[0.022, 0.12, 0.22, 1.02], to examine its effect on
performance. When σip = 1.02, it is equivalent to disabling
the scaling strategy for pro-odometry clusters since the same
variance is used for against-odometry clusters. Experimental
results on the CSAIL and Intel datasets are presented in Fig.
5. It is apparent that when the scaling strategy is disabled,
the ATE significantly increases on both datasets, and the
effect is much more severe for the Intel dataset, due to
its noisy odometry. When the strategy is enabled and with
varying parameter values, the ATE changes by a negligible
amount, with the only exception being σip = 0.022 for the
Intel dataset. For this configuration, the highest ATE is still
below 1m. For the Bicocca dataset, the ATE increases from
1.102m to 2.905m when the scaling strategy is disabled,
and reduced to 0.661m when σip = 0.22, 0.605m when
σip = 0.022.

(a) Results on the CSAIL dataset (b) Results on Intel dataset

Fig. 5: Parameter study on the penalty scaling of pro-odometry cluster

In summary, we can conclude that treating pro-odometry
and against-odometry clusters differently with penalty scal-
ing played a significant role in our method. And despite
having one extra parameter for the pro-odometry clusters, the
performance of our method is only minimally affected when
a wide range of parameter values are used. It is significantly
less sensitive to parameter tuning compared to other methods.

REFERENCES

[1] N. Sunderhauf and P. Protzel, “Switchable constraints for robust pose
graph SLAM,” IEEE International Conference on Intelligent Robots
and Systems, pp. 1879–1884, 2012.

[2] P.-Y. Lajoie, S. Hu, G. Beltrame, and L. Carlone, “Modeling Perceptual
Aliasing in SLAM via Discrete-Continuous Graphical Models,” pp.
1–13, 2018. [Online]. Available: http://arxiv.org/abs/1810.11692

[3] P. Agarwal, G. D. Tipaldi, and L. Spinello, “Robot Map Optimization
using Dynamic Covariance Scaling,” 2013 IEEE International Confer-
ence onRobotics and Automation (ICRA), 2013.

[4] L. Carlone, A. Censi, and F. Dellaert, “Selecting good measurements
via `1 relaxation: A convex approach for robust estimation over graphs,”
IEEE International Conference on Intelligent Robots and Systems, pp.
2667–2674, 2014.

http://arxiv.org/abs/1810.11692

	Effect of outliers' structure
	Effect of Penalty Scaling on pro-odometry cluster
	References

