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APPENDIX A
DEFINING OUR METRICS

In this Appendix, we provide a brief overview of the spindle metrics used in this paper: F1-score, recall, precision, RMS
score and spindle density.

Characterizing the performance of any spindle detector can be done in two different ways:
1) comparing to a ground truth spindle detection for the same data and report metrics of detection performance. This requires

a trustworthy ground truth which can be used for comparison to compute metrics like the F1-score;
2) showing evidence that the spindles detected are in fact spindles and that their distribution approximates the expected

values for humans, with metrics such as spindle density and RMS score of detected spindles.
F1-score, recall and precision are commonly used metrics in classification tasks. These metrics are especially useful when

the class distributions are imbalanced which leads to other common metrics like the accuracy being biased towards the most
common class. We choose these metrics as they do not take into account the True Negatives in their computation as opposed to
other metrics like specificity, which would be biased by the rarity of spindles during sleep and would not be a good indicator
of performance. However, these metrics require comparison to some ground truth. When such a ground truth is not available,
we opt to report RMS score in sigma power and spindle density.

A. F1-Score

F1-score is a metric that combines both precision and recall into a single value. It is particularly useful in scenarios where
the classes are imbalanced. The formula for F1-score is given by:

F1 = 2× precision × recall
precision + recall

where precision is the ratio of true positive predictions to the total number of positive predictions, and recall is the ratio of
true positive predictions to the total number of actual positive instances.

B. Recall

Recall, also known as sensitivity or true positive rate, measures the ability of a classifier to correctly identify positive
instances out of all actual positive instances. The formula for recall is given by:

Recall =
True Positive

True Positive + False Negative

where True Positive (TP) represents the number of correctly identified positive instances, and False Negative (FN) represents
the number of positive instances incorrectly classified as negative.

C. Precision

Precision measures the proportion of true positive predictions out of all positive predictions made by the classifier. The
formula for precision is given by:

Precision =
True Positive

True Positive + False Positive
where True Positive (TP) represents the number of correctly identified positive instances, and False Positive (FP) represents

the number of negative instances incorrectly classified as positive.
Given that our objective is to detect and stimulate spindles for CLS, we use a by-event evaluation of performance. This

means that an event is considered a True Positive if our model detects a spindle the ground truth spindles, as opposed to
making sure that every single sample is correctly identified as a spindle or non-spindle.

D. RMS Score

The RMS (Root Mean Square) score is a metric we defined in the context of this study to assess the quality of candidate
spindle detections. It quantifies the sigma activity at a specific time compared to a baseline period. It is calculated by dividing
the RMS value of the signal filtered in the sigma band (11-16 Hz) at the time of detection (from 0 to 0,5s post detection) by
the RMS value of the same filtered signal 2 second prior to the detection (from -2 to -1.5s pre detection). As spindles, when
occurring in trains, are often distant by 4 seconds, measuring spindle activity 2s prior to the current detection ensures a neutral
baseline value.

Let x(t) denote the sigma signal at time t within the specific time-window of interest. The sigma power of the segment is
then calculated as the Root Mean Square (RMS) of the filtered signal:
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where T is the length of the segment.
Finally, let RMSpost represent the RMS value of the sigma signal in the 0.5 seconds following a spindle detection, and

RMSpre represent the RMS value in a 0.5 seconds-long time window occuring 2 s prior to the same detection. The RMS score
(RMSscore) is calculated as follows:

RMSscore =
RMSpost

RMSpre
(4)

E. Spindle Density

Sleep spindle density is a critical metric utilized in sleep research due to its ability to capture the frequency of spindle
occurrences within a specified period, providing valuable insights into the temporal distribution of spindle activity. Unlike
metrics solely based on spindle presence or absence, spindle density offers a more comprehensive understanding of spindle
dynamics by accounting for variations in spindle occurrence over time. Mathematically, spindle density (SD) is computed as
the number of spindles (Nspindles) detected within a defined epoch duration (Tepoch), typically expressed per unit of time (e.g.,
per minute). Therefore, the spindle density (SD) is calculated as follows:

SD =
Nspindles

Tepoch
(5)

where Nspindles represents the total number of spindles detected within the epoch duration Tepoch.
In addition to the RMS score, spindle density serves as a valuable metric for evaluating the efficacy of our spindle detection

algorithm in terms of both the quality and quantity of detected spindles, removing the necessity for a ground truth reference
for comparison.

APPENDIX B
PORTILOOP HARDWARE SPECIFICATIONS

TABLE IV
TECHNICAL SPECIFICATIONS (HTTPS://CORAL.AI/PRODUCTS/DEV- BOARD-MINI

Component Specification

CPU MediaTek 8167s SoC (Quad-core Arm Cortex-A35)
ML Accelerator Google Edge TPU coprocessor:

4 TOPS (int8); 2 TOPS per watt
RAM 2 GB LPDDR3
Flash Memory 8 GB eMMC

APPENDIX C
VALIDATION RESULTS

This Appendix describes the process employed to select the optimal model for cross-validation, considering the 24-hour
training time constraint. It is crucial to reiterate that the primary focus of this investigation lies in evaluating the effectiveness
of adaptation methods, rather than achieving the absolute best possible final model performance. Consequently, the inherent
quality of the final model holds less significance compared to the improvements observed through the application of each
adaptation method.

Table V presents the comprehensive results for each fold, encompassing both the chosen evaluation metrics: sleep staging
accuracy and sleep spindle detection F1-score. The epoch that maximizes the sum of these two metrics is selected as the
optimal model for subsequent analysis.
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TABLE V
VALIDATION RESULT FOR EACH FOLD

Spindle F1-score Sleep-staging Accuracy Combined (sum)
Fold 1 0.5982 86.14 1.460
Fold 2 0.5051 93.09 1.436
Fold 3 0.4902 88.59 1.376
Fold 4 0.4263 87.78 1.304
Fold 5 0.4913 86.87 1.360
Average 0.5022 88.49 1.387

APPENDIX D
THRESHOLD DISTRIBUTION

Fig. 6. Plot of the F1-score depending on threshold for the entire night for 20 random subjects. Although the model is trained to label either 0 or 1, the
threshold of 0.5 is rarely the best threshold for any subject as was the case with the previous Portiloop model [21].
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APPENDIX E
MODEL STRUCTURE

EEG Encoder

Sleep-stage ClassifierSpindle Classifier

EEG input

Fig. 7. Dual-Task Model Architecture

This Appendix provides a comprehensive explanation of the dual-task model architecture illustrated in Figure 7. The
model is built using the PyTorch deep learning framework [56], and it incorporates various layers to process the input
electroencephalogram (EEG) data to achieve the two objectives of sleep stage classification and online sleep spindle detection.
Here is the detailed description of each layer used:

• Conv1D Layers (Conv1d): This sequence of convolutional layers with 1-dimensional kernels is responsible for extracting
features from the raw EEG data. The number of filters and kernel sizes used in these layers (denoted as Conv1D(inChannels,
outChannels, kernelSize)) are crucial for capturing relevant temporal and spectral features from the EEG signal.

• MaxPool1D Layers (MaxPool1d): These layers perform downsampling along the temporal dimension of the data, reducing
its dimensionality while preserving important features. The kernel size controls the amount of downsampling applied
(denoted as MaxPool1d(kernelSize)).

• GRU Layer (GRU): This Gated Recurrent Unit (GRU) layer is a type of recurrent neural network (RNN) that effectively
captures temporal dependencies within the EEG data. The number of units in the GRU layer (denoted as GRU(inputsize,
hiddenSize) determines its capacity to learn complex temporal relationships.

• Linear Layers (Linear): A sequence of fully-connected linear layers performs further feature extraction and transformation
on the combined representation. The number of units in each linear layer (denoted as Linear(inFeatures, outFeatures) for
input and output dimensions respectively) determines its complexity and capacity to learn higher-level features.

The classification models generate a single floating-point value as output. To ensure these outputs range between 0 and
1, a sigmoid activation function is applied as the final layer. This transformation allows for a probabilistic interpretation of
the model’s predictions. A predefined threshold is then employed to convert the continuous output into a binary classification
(positive or negative).



18

APPENDIX F
REPEATED MEASURES ANOVA - SLEEP STAGING CONFIGURATION * AGE

Here, we show the full results of the ANOVA test performed between the results of SLA7 compared to LA7 depending on
each sleep staging configuration to determine the significance of sleep staging in the computation of our online ground truth
spindles.

TABLE VI
WITHIN SUBJECTS EFFECTS

Cases Sphericity Correction Sum of Squares df Mean Square F p η2

Sleep Staging Greenhouse-Geisser 2.877 1.862 1.545 111.437 < .001 0.247
Sleep Staging * Age Cat Greenhouse-Geisser 0.795 1.862 0.427 30.807 < .001 0.068
Residuals Greenhouse-Geisser 3.434 247.675 0.014

Note: the assumption of sphericity is violated so we use the Greenhouse-Geisser sphericity correction.

TABLE VII
BETWEEN SUBJECTS EFFECTS

Cases Sum of Squares df Mean Square F p η2

Age Cat 0.885 1 0.885 32.110 < .001 0.076
Residuals 3.666 133 0.028

TABLE VIII
POST HOC COMPARISONS - AGE CAT * SLEEP STAGING

Mean Difference SE t pbonf pholm

Older, GroundTruth Younger, GroundTruth 0.016 0.023 0.681 1.000 0.779
Older, None 0.213 0.019 10.926 < .001 < .001

Younger, None 0.118 0.023 5.149 < .001 < .001
Older, Online 0.303 0.019 15.539 < .001 < .001

Younger, Online 0.101 0.023 4.412 < .001 < .001
Younger, GroundTruth Older, None 0.197 0.023 8.591 < .001 < .001

Younger, None 0.103 0.020 5.226 < .001 < .001
Older, Online 0.287 0.023 12.505 < .001 < .001

Younger, Online 0.086 0.020 4.365 < .001 < .001
Older, None Younger, None −0.095 0.023 −4.123 < .001 < .001

Older, Online 0.090 0.019 4.613 < .001 < .001
Younger, Online −0.112 0.023 −4.859 < .001 < .001

Younger, None Older, Online 0.185 0.023 8.037 < .001 < .001
Younger, Online −0.017 0.020 −0.862 1.000 0.779

Older, Online Younger, Online −0.201 0.023 −8.774 < .001 < .001



19

APPENDIX G
REPEATED MEASURES ANOVA - ADAPTATION CONFIGURATIONS * AGE FOR SINGLE NIGHT EXPERIMENTS

TABLE IX
WITHIN SUBJECTS EFFECTS

Cases Sphericity Correction Sum of Squares df Mean Square F p η2

Config Greenhouse-Geisser 0.148 2.002 0.074 37.581 < .001 0.027
Config * Age Cat Greenhouse-Geisser 0.025 2.002 0.013 6.375 0.002 0.004
Residuals Greenhouse-Geisser 0.505 256.312 0.002

Note: the assumption of sphericity is violated so we use the Greenhouse-Geisser sphericity correction.

TABLE X
BETWEEN SUBJECTS EFFECTS

Cases Sum of Squares df Mean Square F p η2

Age Cat 0.136 1 0.136 3.654 0.058 0.024
Residuals 4.773 128 0.037

TABLE XI
POST HOC COMPARISONS - AGE CAT * CONFIG

Mean Difference SE t pbonf

Older, Baseline Younger, Baseline −0.017 0.018 −0.978 1.000
Older, Threshold −0.022 0.006 −3.440 0.018

Younger, Threshold −0.060 0.018 −3.384 0.025
Older, Fine-tuning 0.011 0.006 1.746 1.000

Younger, Fine-tuning −0.010 0.018 −0.582 1.000
Older, Combined −0.007 0.006 −1.042 1.000

Younger, Combined −0.059 0.018 −3.297 0.034
Younger, Baseline Older, Threshold −0.004 0.018 −0.241 1.000

Younger, Threshold −0.043 0.006 −6.685 < .001
Older, Fine-tuning 0.028 0.018 1.597 1.000

Younger, Fine-tuning 0.007 0.006 1.102 1.000
Older, Combined 0.011 0.018 0.609 1.000

Younger, Combined −0.041 0.006 −6.445 < .001
Older, Threshold Younger, Threshold −0.039 0.018 −2.165 0.894

Older, Fine-tuning 0.033 0.006 5.186 < .001
Younger, Fine-tuning 0.011 0.018 0.637 1.000

Older, Combined 0.015 0.006 2.398 0.475
Younger, Combined −0.037 0.018 −2.078 1.000

Younger, Threshold Older, Fine-tuning 0.071 0.018 4.002 0.003
Younger, Fine-tuning 0.050 0.006 7.787 < .001

Older, Combined 0.054 0.018 3.014 0.084
Younger, Combined 0.002 0.006 0.240 1.000

Older, Fine-tuning Younger, Fine-tuning −0.021 0.018 −1.201 1.000
Older, Combined −0.018 0.006 −2.788 0.156

Younger, Combined −0.070 0.018 −3.916 0.004
Younger, Fine-tuning Older, Combined 0.004 0.018 0.213 1.000

Younger, Combined −0.048 0.006 −7.546 < .001
Older, Combined Younger, Combined −0.052 0.018 −2.928 0.110
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APPENDIX H
REPEATED MEASURES ANOVA - SPINDLE DENSITY OF ADAPTATION CONFIGURATION * EXPERIMENT TYPE

This Appendix presents the detailed results of our ANOVA analysis comparing the spindle density of various adaptation
configurations (Baseline, Threshold, WeightAveraging, and Train) with the two experiment types (Random and SameSubject).

TABLE XII
WITHIN SUBJECTS EFFECTS

Cases Sphericity Correction Sum of Squares df Mean Square F p η2

Config Greenhouse-Geisser 1673.858 1.887 887.022 10.634 < .001 0.042
Config * experiment type Greenhouse-Geisser 226.324 1.887 119.935 1.438 0.240 0.006
Residuals Greenhouse-Geisser 18101.349 217.011 83.412

Note: the assumption of sphericity is violated so we use the Greenhouse-Geisser sphericity correction.

TABLE XIII
BETWEEN SUBJECTS EFFECTS

Cases Sum of Squares df Mean Square F p η2

experiment type 9.216 1 9.216 0.054 0.817 2.324× 10−4

Residuals 19646.473 115 170.839

TABLE XIV
POST HOC COMPARISONS - EXPERIMENT TYPE * CONFIG

Mean Difference SE t pholm

Random, Baseline SameSubject, Baseline 0.520 2.760 0.188 1.000
Random, Threshold 6.858 1.000 6.860 < .001

SameSubject, Threshold 5.310 2.760 1.924 0.878
Random, WeightAveraging 10.629 1.000 10.632 < .001

SameSubject, WeightAveraging 7.146 2.760 2.589 0.211
Random, Train 4.148 1.000 4.149 0.001

SameSubject, Train 6.808 2.760 2.466 0.283
SameSubject, Baseline Random, Threshold 6.338 2.760 2.296 0.424

SameSubject, Threshold 4.790 2.957 1.620 1.000
Random, WeightAveraging 10.109 2.760 3.662 0.007

SameSubject, WeightAveraging 6.626 2.957 2.241 0.462
Random, Train 3.628 2.760 1.314 1.000

SameSubject, Train 6.288 2.957 2.126 0.581
Random, Threshold SameSubject, Threshold −1.548 2.760 −0.561 1.000

Random, WeightAveraging 3.771 1.000 3.772 0.005
SameSubject, WeightAveraging 0.288 2.760 0.104 1.000

Random, Train −2.710 1.000 −2.711 0.155
SameSubject, Train −0.050 2.760 −0.018 1.000

SameSubject, Threshold Random, WeightAveraging 5.318 2.760 1.927 0.878
SameSubject, WeightAveraging 1.836 2.957 0.621 1.000

Random, Train −1.162 2.760 −0.421 1.000
SameSubject, Train 1.498 2.957 0.507 1.000

Random, WeightAveraging SameSubject, WeightAveraging −3.482 2.760 −1.262 1.000
Random, Train −6.481 1.000 −6.483 < .001

SameSubject, Train −3.821 2.760 −1.384 1.000
SameSubject, WeightAveraging Random, Train −2.998 2.760 −1.086 1.000

SameSubject, Train −0.338 2.957 −0.114 1.000
Random, Train SameSubject, Train 2.660 2.760 0.964 1.000
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APPENDIX I
REPEATED MEASURES ANOVA - SPINDLE DENSITY OF ADAPTATION CONFIGURATION * NIGHT NUMBER

TABLE XV
WITHIN SUBJECTS EFFECTS

Cases Sphericity Correction Sum of Squares df Mean Square F p η2

Config Greenhouse-Geisser 10828.127 2.168 4994.211 34.993 < .001 0.134
Config * night num Greenhouse-Geisser 916.044 10.841 84.501 0.592 0.832 0.011
Residuals Greenhouse-Geisser 34347.400 240.663 142.720

Note: the assumption of sphericity is violated so we use the Greenhouse-Geisser sphericity correction.

TABLE XVI
BETWEEN SUBJECTS EFFECTS

Cases Sum of Squares df Mean Square F p η2

night num 1751.581 5 350.316 1.187 0.320 0.022
Residuals 32767.598 111 295.204

TABLE XVII
POST HOC COMPARISONS - CONFIG

Mean Difference SE t pholm

Baseline Threshold 6.660 1.030 6.465 < .001
Fine-tuning 4.417 1.030 4.288 < .001

WeightAveraging 10.231 1.030 9.931 < .001
Combined 11.981 1.030 11.629 < .001

ClassifierOnly 8.354 1.030 8.109 < .001
Threshold Fine-tuning −2.243 1.030 −2.177 0.119

WeightAveraging 3.571 1.030 3.466 0.003
Combined 5.320 1.030 5.164 < .001

ClassifierOnly 1.694 1.030 1.644 0.207
Fine-tuning WeightAveraging 5.814 1.030 5.644 < .001

Combined 7.563 1.030 7.342 < .001
ClassifierOnly 3.937 1.030 3.821 0.001

WeightAveraging Combined 1.749 1.030 1.698 0.207
ClassifierOnly −1.877 1.030 −1.822 0.207

Combined ClassifierOnly −3.627 1.030 −3.520 0.003
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APPENDIX J
ANOVA - RMS SCORE COMPARED TO NIGHT NUMBER AND CONFIGURATION

TABLE XVIII
ANOVA - RMS SCORE

Cases Sum of Squares df Mean Square F p η2

night num 14659.143 5 2931.829 970.807 < .001 0.003
config 48077.866 5 9615.573 3183.975 < .001 0.009
night num * config 7133.757 25 285.350 94.487 < .001 0.001
Residuals 5.161× 10+6 1708899 3.020

TABLE XIX
POST HOC COMPARISONS - CONFIG

Mean Difference SE t ptukey

WeightAveraging ClassifierOnly 0.193 0.005 37.106 < .001
Combined −0.013 0.006 −2.287 0.199

Fine-tuning 0.371 0.005 76.972 < .001
Baseline 0.447 0.005 97.462 < .001

Threshold 0.238 0.005 47.803 < .001
ClassifierOnly Combined −0.205 0.005 −37.559 < .001

Fine-tuning 0.178 0.005 37.883 < .001
Baseline 0.254 0.004 56.979 < .001

Threshold 0.045 0.005 9.231 < .001
Combined Fine-tuning 0.383 0.005 74.991 < .001

Baseline 0.460 0.005 93.870 < .001
Threshold 0.250 0.005 47.604 < .001

Fine-tuning Baseline 0.076 0.004 18.992 < .001
Threshold −0.133 0.004 −29.936 < .001

Baseline Threshold −0.209 0.004 −49.887 < .001


