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This paper presents a detailed overview and the experimental comparison of 15 multi-objective Design Space
Exploration (DSE) algorithms for high-level design. These algorithms are collected from recent literature
and include heuristic, evolutionary and statistical methods. To provide a fair comparison, the algorithms
are classified according to the approach used and examined against a large set of metrics. In particular,
the effectiveness of each algorithm was evaluated for the optimization of a multi-processor platform, con-
sidering initial setup effort, rate of convergence, scalability, and quality of the resulting optimization. Our
experiments are performed with statistical rigor, using a set of very diverse benchmark applications (a
video converter, a parallel compression algorithm, and a fast Fourier transformation algorithm) to take a
large spectrum of realistic workloads into account. Our results provide insights on the effort required to
apply each algorithm to a target design space, the number of simulations it requires, its accuracy, and its
precision. These insights are used to draw guidelines for the choice of DSE algorithms according to the type
and size of design space to be optimized.
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1. INTRODUCTION
The continuous increase of transistor density on a single die is leading towards the
production of more and more complex systems on a single chip, with an increasing
number of integrated components and processing units. This trend brought to the in-
troduction of the System-On-Chip (SoC), that integrates on a single medium all the
components of a full system. The design and development of such systems [Paulin and
Knight 1989] raises challenges [Hill and Marty 2008] due to the large design space,
and tight constraints [Martin 2006].

Parametrized embedded System-on-Chip (SoC) architectures must be optimally
tuned, i.e. their configuration parameters must be appropriately chosen, to find the
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best trade-off in terms of the selected figures of merit (e.g. energy, area, and delay) for
a given class of applications. This tuning process is called Design Space Exploration
(DSE) [Pimentel et al. 2006]. Using DSE, a designer can find the optimal configuration
for a given system.

In general, this optimization problem involves the minimization (or maximization)
of multiple objectives, making the definition of optimality not unique. The quality of
a system configuration according to the various objectives is usually expressed using
a set of metrics or objective functions. Solving multi-objective optimization problems
consists of finding the points of the Pareto curve [Givargis et al. 2001], i.e. all the
points which are better than all the others for at least one metric or objective function.

However, a Pareto curve for a specific platform is available only when all the points
in the design space have been evaluated and characterized in terms of objective func-
tions. This full search approach is often unfeasible due to the high cardinality of the
design space, and to the high cost associated with the evaluation of the objective func-
tions (e.g. long simulation times). A viable, but less expressive, solution would consist
in the use of scalarizing functions [Miettinen and Mkel 2002]), which transform the
problem into a single objective search.

Currently, Multi-Processor SoCs (MPSoCs) platforms are optimized using either by
designer experience or by applying several different algorithms. Examples are classical
heuristic algorithms (such as tabu search, simulated annealing, etc.) [Palesi and Gi-
vargis 2002], or pruning techniques that try to reduce the size of the design space [Mo-
hanty et al. 2002]. These techniques rely on simulation (or estimation) for the evalua-
tion of the system-level metrics corresponding to a newly found configuration.

Depending on the parameters of the design space (such as size and time needed
for one simulation), algorithms show different performance and accuracy of results.
This work identifies and compares 15 algorithms among several of the most recent ap-
proaches proposed in literature, for automated DSE with multiple performance met-
rics. These methods differ from theoretical background, applicability conditions, and
performance. Through a rigorous analysis, we identify the advantages and drawbacks
of each method, obtaining guidelines for their use with different applications.

The main contributions of this work are: (a) a comprehensive overview, as we take
into account more and more diverse multi-objective optimization methodologies than
previous surveys in the field, (b) a quantitative analysis, as our results provide num-
bers and metrics allowing a clear comparison of multi-objective optimization method-
ologies on the common ground of DSE for MPSoCs, and (c) insights, as we give recom-
mendations for the choice of the most appropriate algorithm for a target design space.

The paper is structured as follows: Section 2 briefly reviews other comparative works
in the field of multi-objective optimization and DSE; Section 3 describes the landscape
of multi-objective optimization and DSE algorithms and proposes their partitioning
into four classes; Section 4 summarizes the theory behind each one of the 15 algorithms
included in our experimental comparison; Section 5 presents the experimental setup
and the framework we used to compare the algorithms, while results are presented in
Section 6; Section 7 contains the discussion of the results and the recommendations of
the authors; finally, Section 8 concludes the paper.

2. RELATED WORK
Several other works reviewing and comparing state-of-the-art algorithms for multi-
objective optimization exist in literature [Coello 1998; Zitzler et al. 1999b; Ulungu and
Teghem 1994], with most of them providing algorithm descriptions in the form of a
survey. In general, these surveys do not attempt quantitative comparisons and they do
not provide any novel experimental evaluation.
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Fonseca and Fleming [1995] claim that evolutionary algorithms (EA), since their
appearance, quickly became one of the most popular ways to solve multi-objective
problems. The paper provides theoretical insights on how to assign fitness values1

for multi-objective problems, but doesn’t provide guidelines for the choice of EAs to be
used on specific problems.

Coello [2000] identifies three families of evolutionary approaches for multi-
objective optimization based on the way the algorithms compute the fitness of in-
dividuals/solutions: algorithms using aggregating functions, algorithms using non-
aggregating but non Pareto-based approaches, and Pareto-based approaches, e.g., the
NSGA algorithm included in our experimental pool. Some experiments are reported,
but the results are not systematically compared.

Marler and Arora [2004] broadens the discussion on multi-objective optimization
including approaches other than evolutionary algorithms. Multi-objective optimization
methodologies are divided into: (a) algorithms with a priori specification of preferences
(e.g. scalarizing and utility functions), (b) algorithms with a posteriori specification of
preferences, returning a set of Pareto points, (c) algorithms with no specification of
preferences, typically simplifications of approaches from (a) with constant parameters,
and (d) genetic algorithms (GA), e.g., the IMMOGLS algorithm also described in this
work. The cost of programming and the computational complexity of the algorithms
are compared only in a qualitative way.

In terms of experimental groundwork, the closest works to this paper were published
in [Zitzler and Thiele 1999], [Zitzler et al. 1999a] and [Zitzler et al. 1999b]. Zitzler et
al. compare seven evolutionary algorithms, including SPEA and NSGA, detailed later
in this paper, using one realistic (the synthesis of a multiprocessor) and two artificial
problems. As our results confirm, they discover that SPEA outperforms NSGA. The
main flaw of these publications is that their scope is limited to evolutionary algorithms,
while we consider algorithms exploiting very different methodologies.

Finally, it is worth mentioning Okabe et al. [2003], which summarizes several met-
rics for the evaluation of solutions to multi-objective optimization problems. Okabe
et al. [2003] suggests that no single metric is sufficient to judge the quality of the
Pareto set returned by a multi-objective optimization algorithm. Similar claims, to-
gether with innovative visualization tools for the Pareto sets discovered by multi-
objective evolutionary algorithms, can be found in [Taghavi and Pimentel 2011]. In
our work, we use four different metrics to evaluate the accuracy, distribution, and car-
dinality of the Pareto sets found by the optimization algorithms. Moreover, we compare
the performance of 15 algorithms as the number of evaluations needed to converge to
a Pareto set.

3. PROPOSED TAXONOMY
The challenge of automated DSE can be divided in two sub-problems: (a) the identi-
fication of candidate solutions (i.e. valid system configurations), (b) the evaluation of
metrics of interest for such solutions, and the selection of the optimal configurations.

Considering the context of embedded systems design, we identify four main classes
of techniques proposed in literature for the problem (a):

— Class 1: Heuristics and pseudo-random optimization approaches, that try
to reduce the design space and focus the exploration on regions of interest [Givargis
et al. 2001; Fornaciari et al. 2002]. These techniques normally rely on full search or

1The metric used by evolutionary algorithms to evaluate the goodness of a solution and its probability of
being recombined.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 20XX.



00:4 J. Panerati and G. Beltrame

Table I. Comparison of experimental settings in DSE literature.

Paper Ref. Class Approach Optim. Metrics Adjustable Param.
Delay Power Area Proc. Units Freq./Volt. Cache Ass./Size

Palermo et al. [2008] 1 Particle Swarm Optimization
√ √ √

Lukasiewycz et al. [2008] 1 MO Pseudo Boolean
√ √ √

Givargis et al. [2001] 1 Parameter Dependency Model
√ √ √ √

Palesi and Givargis [2002] 2 Genetic Algorithms
√ √ √

Fornaciari et al. [2002] 1 Sensitivity-Based
√ √ √

Sheldon et al. [2007] 3 Design of Experiments
√ √ √ √

Mariani et al. [2010] 3 Correlation-Based
√ √ √ √

Palermo et al. [2009] 3 Response Surface-Based
√ √ √ √

Beltrame et al. [2010] 4 Decision Theoretic
√ √ √ √ √

Table II. Comparison of design space size in DSE literature.

Paper Ref. Class Design Space Size

Palermo et al. [2008] 1 196608
Givargis et al. [2001] 1 > 1014

Fornaciari et al. [2002] 1 9216
Palesi and Givargis [2002] 2 5.97 ⋅ 1012

Sheldon et al. [2007] 3 16384
Mariani et al. [2010] 3 217

Palermo et al. [2009] 3 217

Beltrame et al. [2010] 4 8640

pseudo-random algorithms to explore the selected regions. Metaheuristics such as
simulated annealing (SA) and multi-agent optimization belong to this class.

— Class 2: Evolutionary algorithms. These techniques are the most common and
widely used, they rely on random changes of a starting set of configurations to it-
eratively improve the system under analysis. In this category we find genetic algo-
rithms [Palesi and Givargis 2002].

— Class 3: Statistical approaches without domain knowledge. These tech-
niques extract a metamodel from the design space and use it to predict which new
configurations to consider [Sheldon et al. 2007; Lukasiewycz et al. 2008; Palermo
et al. 2009; Mariani et al. 2010].

— Class 4: Statistical approaches with domain knowledge. These techniques
use pre-defined rules associated to the design space to find the most promising so-
lutions [Beltrame et al. 2010].

Problem (b), i.e. the evaluation of candidate solutions, is usually addressed via two
mechanisms (or a combination): detailed simulation [Beltrame et al. 2010] or estima-
tion using predictive models [Jaddoe and Pimentel 2008].

Class 1 features a vast range of algorithms that are currently used in various do-
mains, including: (a) multi-agent optimization such as particle swarm optimization
(PSO) [Palermo et al. 2008], (b) simulated annealing, and (c) other operations research
algorithms (such as tabu search). In Givargis et al. [2001], the design space is divided
into partitions, and exhaustive search is performed inside each partition. Then the
Pareto-optimal configurations of each partition are combined to determine the global
curve. A different technique, proposed in Fornaciari et al. [2002], aims at reducing the
number of configurations from the product of the number of parameters to their sum.
Although complexity is highly reduced, the exploration results remain in many cases
sub-optimal.

Class 2 techniques are probably the most widely used. Genetic algorithms and exact
methods are combined in Lukasiewycz et al. [2008]: the design space exploration prob-
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lem is formalized as a multi-objective 0-1 Integer Linear Programming (ILP) problem.
A pseudo-boolean solver is used to force the genetic algorithm to stay in the feasi-
ble search space. These algorithms require a relatively small effort to describe design
space, and they do not require specific knowledge associated to the domain or the met-
rics used for the exploration. However, they do not guarantee optimality or convergence
within certain accuracy or precision bounds, even though they generally perform well
when running a sufficient number of evaluations.

Class 3 methods rely on statistical analysis. A group of techniques, referred to as
Design of Experiments (DoE) [Sheldon et al. 2007; Palermo et al. 2009; Mariani et al.
2010] is often used to characterize the impact of the parameters on the system. This
means estimating the portion of the variance of the objective functions associated to
the variation of each parameter. Once sensitivity analysis is performed, heuristics or
metamodels are used to modify the parameters and determine the optimal system
configuration. Palermo et al. [2009] use DoE to generate an initial set of experiments,
creating a coarse view of the target design space. Response surface modeling (RSM) is
then used to refine the exploration; this process is iterated to cover the design space.
The solid statistical foundation of these algorithms allows to extract the maximum
amount of information from the initial training set, and the generated metamodels can
be used to find new candidate configurations or quickly evaluate potential solutions.

The algorithms in Class 4 use expert knowledge to set up a probabilistic framework
to determine the best candidate solutions. Beltrame et al. [2010] introduces the use
of decision theory to exploit this expert knowledge. The idea is to move the design
space exploration complexity from simulation to probabilistic analysis of parameter
transformations. Exploration is modeled as a Markov decision process (MDP) [Russell
and Norvig 1995; Kaelbling et al. 1996], and the solution to such MDP corresponds to
the sequence of parameter transformations to be applied to the platform to maximize
(or minimize) a desired value function. This approach requires to simulate the system
only in particular cases of uncertainty, massively reducing the simulation time needed
to perform the exploration of a system, while maintaining the near-optimality of the
results.

In this work we collected algorithms from all the four classes and we compared
their strengths and weaknesses using a realistic benchmark scenario: a symmetric
multi-processor platform. The results provide guidelines in the use of multi-objective
optimization algorithms for DSE.

To allow a fair and clear comparison with previous DSE works, Table I reports the
optimization metrics and parameters of previous publications, Table II contains in-
formation on the size of the explored domain spaces, while Table III briefly lists the
software applications originally used as benchmarks.

4. MULTI-OBJECTIVE ALGORITHMS FOR DESIGN SPACE EXPLORATION
We include fifteen multi-objective algorithms for DSE in our experimental comparison.

4.1. Class 1
4.1.1. Adaptive Windows Pareto Random Search (APRS). The APRS algorithm is one of

the two novel algorithms implemented in the Multicube Explorer framework [Zaccaria
et al. 2010]. The algorithm starts with an initial set of candidate Pareto points and
then attempts to improve the Pareto set by picking randomly among the points inside
windows centered on the current points. The size of the windows is reduced over time
(at each iteration) and proportionally with the quality of the point associated to them.

4.1.2. Multi-Objective Multiple Start Local Search (MOMSLS). Local search is a simple
heuristic that iteratively refines an initial random solution by looking for improve-
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Table III. Comparison of benchmark applications in DSE literature.

Paper Ref. Class Benchmark Applications

Palermo et al. [2008] 1 FIR (finite impulse filter), Gamma and DCT (numeric al-
gorithms), Gauss and Quarcube (equations solvers).

Lukasiewycz et al. [2008] 1 ALC (adaptive light control), a large automotive design
problem.

Givargis et al. [2001] 1 “JPEG”, a jpeg compression algorithm using the on-chip
DCT CODEC core to perform the forward DCT transform.

Fornaciari et al. [2002] 1 MESA, a 3D graphics library close to OpenGL,
GSM06.10, European standard encoder and decoder.

Palesi and Givargis [2002] 2 Motorola PowerStone, a collection of embedded and
portable applications.

Sheldon et al. [2007] 3 A set of EEMBC (Embedded Microprocessor Benchmark
Consortium) benchmark applications.

Mariani et al. [2010] 3 A set of benchmarks derived from the Stanford Parallel
Applications for Shared Memory (SPLASH) suite.

Palermo et al. [2009] 3 MPEG2 decoder application.
Beltrame et al. [2010] 4 ffmpeg, pigz and fft6 (see Table IX for additional details).

Table IV. The most relevant parameters used by the MOPSO algorithm.

MOPSO [Palermo et al. 2008] - Class 1

Param. Description Val.

W inertia weight unused
C1 social learning factor unused
C2 cognitive learning factor 1
p probability of taking a random walk 0.9,0.5,0.2

ments in a neighbourhood of the current solution [Russell and Norvig 1995]. MOM-
SLS [Jaszkiewicz and Dbrowski 2005] simply consists of a local search procedure using
multiple solution points in its initial step. At each step the algorithm looks for better
solutions in the N neighbourhoods of all the current solutions.

4.1.3. Multi-Objective Particle Swarm Optimization (MOPSO). Particle Swarm Optimization
(PSO) [Kennedy and Eberhart 1995] is a heuristic search methodology that finds its
biological inspiration in the behaviour of flocks of birds. At each search iteration, the
particles in the swarm move towards an objective using a velocity vector that is the
linear combination of three components:

— the previous velocity vector (weighted by inertia, W )
— the direction towards the best (i.e. closest to the objective) position ever reached by

the swarm (weighted by a social learning factor, C1)
— the direction towards the best position ever reached by the specific particle

(weighted by a cognitive learning factor, C2)

In multi-objective particle swarm optimization (MOPSO) [Palermo et al. 2008], PSO
is applied to a multi-objective domain by using N swarms, each of which having as
an objective the product of the multiple objectives combined with randomly chosen
exponents.

In MOPSO, inertia and social learning factors are unused: in order to avoid local
minima, at each iteration, particles are forced to move with random velocity (a random
walk) with a fixed probability p.

4.1.4. Multi-Objective Simulated Annealing (MOSA). Simulated annealing (SA) is a local
search technique that uses a special technique to avoid local minima: solutions that
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Table V. The most relevant parameters used by the MOSA, PSA and SMOSA algorithms.

MOSA [Ulungu et al. 1999], PSA [Czyzak and Jaszkiewicz 1998],
SMOSA [Serafini 1994] - Class 1

Param. Description Val.

Np generating population size 10
T0 initial temperature used to parametrize the Boltzmann distribution 2.50
Tf final temperature used to parametrize the Boltzmann distribution 0.1
γ weights change coefficient 0.1

are worse than the current are rejected with a given probability p, computed using a
Boltzmann distribution (parametrized by a coefficient T , called temperature).

Ulungu et al. [1999] propose two ways of applying simulated annealing to multi-
objective problems:

(1) probability scalarization, the computation of rejection probability for each perfor-
mance metric and their aggregation

(2) criterion scalarization, the projection of the performance metrics into a single met-
ric, and the use of such metric to compute the rejection probability of the new solu-
tion.

The latter approach is the one implemented in MOSA [Ulungu et al. 1999], and tested
in this paper using the parameters in Table V, while approach (1) is the one used by
the other SA-based algorithms presented below.

4.1.5. Pareto Simulated Annealing (PSA). PSA [Czyzak and Jaszkiewicz 1998] proposes
two different criteria for the application of simulated annealing to multi-objective prob-
lems:

(1) rule C says the rejection probability p is proportional to the largest value among the
differences between the performance metrics of the current and the new solution;

(2) rule SL states that p is a weighted linear combination of the differences between
the performance metrics of the current and the new solution.

Concerning rule SL, the weights used to multiply each metric are increased or reduced
at each iteration, depending whether the most recently introduced solution brought a
deterioration in that specific metric or not.

See Table V for the algorithm specific parameters used in our experiments.

4.1.6. Serafini’s Multiple Objective Simulated Annealing (SMOSA). Serafini [1994] propose
several rules for the combination of multiple performance metrics in order to apply
simulated annealing in the context of multi-objective optimization. Together with re-
viewing the C and SL rules described in [Czyzak and Jaszkiewicz 1998], a new com-
posite rule is introduced. This rule is the linear composition, with coefficients α and
(1 − α), of two simpler rules:

(1) rule P, saying that the rejection probability p is proportional to the product of the
differences between the performance metrics of the current and the new solution;

(2) and rule W, saying that p is proportional to the smallest value among the differ-
ences between the performance metrics of the current and the new solution.

4.2. Class 2
4.2.1. Multiple Objective Genetic Local Search (MOGLS). MOGLS [Ishibuchi and Murata

1996] is an algorithm combining two well known methodologies, genetic algorithms
and local search. Algorithms combining multiple search methodologies are usually
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Table VI. The most relevant parameters used by the IMMOGLS, MOGLS and PMA algorithms.

IMMOGLS [Ishibuchi and Murata 1998], MOGLS [Ishibuchi and Murata 1996],
PMA [Jaszkiewicz 2004] - Class 2

Param. Description Val.

Np population size 20
Ni number of iterations 7
f scalarizing function family linear

called hybrid approaches. Genetic algorithms start from a set of possible solutions,
called population, and come up with new tentative solutions by combining cou-
ples of existing solutions X picked with a probability p given by a fitness function
f(X) [Sivanandam and Deepa 2007]. At each iteration of the MOGLS algorithm,
(a) new solutions are generated using genetic operations and (b) a local search is
performed in the neighbourhoods of these new solutions. The algorithm-specific pa-
rameters used in our experiments for MOGLS and the other genetic-local hybrid ap-
proaches, IMMOGLS and PMA, are reported in Table VI.

4.2.2. Ishibuchi-Murata Multi-Objective Genetic Local Search (IMMOGLS). IM-
MOGLS [Ishibuchi and Murata 1998] is similar to MOGLS, being the combination
of genetic algorithms and local search. In a multi-objective minimization problem, a
solution is said to be non-dominated with respect to a set of solutions, if it scores the
minimum value in at least one of the metrics we want to minimize, the solution is
dominated otherwise. At each iteration, IMMOGLS performs both genetic operations
and a local search with three characteristics:

(1) the fitness function is a linear combination of the optimization metrics and the
weights are chosen randomly at each iteration;

(2) the local search is limited to a number of k neighbours, where k is random;
(3) at each iterations, the current population is purged of any dominated solutions

(elitist strategy).

4.2.3. Non-Dominated Sorting Genetic Algorithm (NSGA). NSGA [Srinivas and Deb 1994]
is a straightforward application of the genetic approach to multi-objective optimiza-
tion. At each iteration, NSGA assigns to the Pareto points in the current population
their fitness values on the basis of non-domination. All non-dominated solutions are
assigned the same fitness value. See Table VII for the algorithm specific parameters
used in our experiments.

4.2.4. Controlled Non-Dominated Sorting Genetic Algorithm (NSGAII). Deb and Goel [2001]
present NSGAII, an evolution of NSGA with two main differences:

(1) NSGAII is an elite-preserving algorithm,i.e., non-dominated solutions cannot be
removed from the current population;

(2) solutions are sorted based on non-domination to reduce computational complexity.

4.2.5. Pareto Memetic Algorithm (PMA). PMA [Jaszkiewicz 2004] belongs to the family
of hybrid genetic-local search algorithms, together with IMMOGLS and MOGLS. Its
very own peculiarity resides in the way used to select the couple of current solutions
that are combined with genetic operations: these two solution are not directly drawn
from the current population. Instead, PMA samples with repetition a new set of solu-
tions T from the current population. Then, the best two solutions in T are chosen for
recombination.
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Table VII. The most relevant parameters used by the NSGA, NSGAII and SPEA algorithms.

NSGA [Srinivas and Deb 1994], NSGAII [Deb and Goel 2001],
SPEA [Zitzler and Thiele 1999] - Class 2

Param. Description Val.

Np generating population size 15
Ng number of generations 55
p mutation probability 0.2

4.2.6. Strength Pareto Evolutionary Algorithm (SPEA). SPEA [Zitzler and Thiele 1999] be-
longs to the broad family of heuristic search methods called evolutionary algorithms.
Its peculiarities are:

(1) all the non-dominated solutions are stored and preserved in a second external pop-
ulation;

(2) the fitness of a solution in the current population is determined only from the
solutions stored in the external non-dominated set [Zitzler and Thiele 1999];

(3) a clustering step is applied to the non-dominated population in order to keep it
small while preserving its characteristics.

4.3. Class 3
4.3.1. Response Surface Pareto Iterative Refinement (ReSPIR). ReSPIR [Palermo et al.

2009] is a DSE algorithm that uses statistical tools to create and keep an internal
representation of the relations between the configuration parameters and the perfor-
mance metrics in order to minimize the number of evaluations needed for successful
optimization. These statistical tools are:

(1) Design of experiments (DoE), a methodology allowing to maximize the information
gained from a set of empirical trials;

(2) response surface models (RSM), analytical representations of an objective trained
with the available data. Different models can be used: linear regression, Shepard-
based interpolation, artificial neural networks (ANN), etc.

The algorithm iteratively defines (using DoE) a set of experiments to be performed,
trains the RSMs with the information collected and then produces an intermediate
Pareto set.

4.4. Class 4
4.4.1. Markov Decision Process Optimization (MDP). The approach proposed by Beltrame

et al. [2010] is based on a framework for sequential decision making called Markov
decision process. Its components are states, actions, stochastic transitions from state
to state, and rewards. The framework allows to find the correct action to perform in
each state to collect the largest amount of rewards [Russell and Norvig 1995]. In [Bel-
trame et al. 2010], states are parameters configurations with their associated perfor-
mance metrics, actions are parameters changes and rewards are improvements in the
performance metrics. Stochastic transitions are initially believed to have uniform dis-
tribution and their estimates are refined over execution. It is worth noting that the
algorithm requires built-in domain knowledge of the upper and lower bounds of each
performance metric as a function of the tuning parameters. For this reason, MDP has
a long set-up time and cannot be used without extensive domain knowledge regarding
the platform used by the system under design. Table VIII reports the algorithm-specific
parameters used in our experiments.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 20XX.



00:10 J. Panerati and G. Beltrame

Table VIII. The most relevant parameters used by the MDP algorithm.

MDP [Beltrame et al. 2010] - Class 4

Param. Description Val.

l event horizon, maximum length of a decision path 3
ε convergence margin, stopping criterion 10−6

λ accuracy factor, used to tune the discretization of the domain space 0.3
∣A∣ the number of α values, i.e., number of modifications that can be ap-

plied to a parameter
6

4.4.2. Multi-Objective Markov Decision Process (MOMDP). MOMDP [Beltrame and Nico-
lescu 2011] is an improved version of MDP. The main difference with respect to MDP
is that MOMDP uses a different exploration strategy. MDP considers different objec-
tives usign a parametric scalarizing function, and varies a parameter (called α) which
represents the weight(s) associated to each objective. By sweeping α values, it is pos-
sible to discover a Pareto curve for a given number of separate obectives.

MOMDP uses a different approach: it maximizes (or minimizes) one of the objectives
to derive a starting point, and then builds the Pareto curve using a value function that
selects a point that is close to the starting point, but improving it in at least one of the
objectives. The process is repeated using the newly found point until a full Pareto front
is discovered.

MOMDP also introduces a special action, called the leap of faith, that allows to avoid
local minima by searching in the direction of high rewards, however unlikely. This
action is performed when all actions fail to improve any of the metrics. The algorithm-
specific parameters used in the experiments are the same as the ones in Table VIII,
with the exception of the event horizon, that was increased to 4.

5. EXPERIMENTAL SETUP
We collected the implementation of the 15 multi-objective algorithms that we eval-
uated and compared from different sources. Most class 1 and class 2 algorithms al-
gorithms are implemented in the Multiple Objective MetaHeuristics Library in C++
(MOMHLib++) by Jaszkiewicz and Dbrowski [2005]. We also draw from the work of
Zaccaria et al. [2010], Multicube Explorer (M3Explorer), that implements standard
and enhanced versions of several well-known multi-objective optimization algorithms.
Multicube Explorer provides some of the DSE algorithms in classes 1 and 3. Concern-
ing the algorithms in class 4, MDP and MOMDP, we used the original source code. All
of these libraries and research projects are open-source and the authors provide open
access to their implementations.

Our experiments aim at:

— determining the effort needed to apply each algorithm to a given design space,
and how the design space’s characteristics drive the choice of the most effective
exploration algorithm

— determining the number of evaluations required by each algorithm to obtain an
approximate Pareto-set of given quality

— quantifying the properties of the Pareto-set found by each algorithm.

A qualitative comparison of the 15 algorithms is presented in Table XI. Each al-
gorithm was applied to the same design space: a symmetric multi-processor platform
running three different applications, shown in Figure 1. The platform consists of a col-
lection of ARM9 cores with private caches, and a shared memory, interconnected by
a simple system-bus model. Cache coherency is directory-based and using the MESI
protocol. The ReSP [Beltrame et al. 2009] open-source simulation environment was
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Table IX. The three benchmark applications chosen to represent a significant spectrum of workloads.

Application Version Source Model Synch. Sim. Time Description

pigz 2.1 C pthreads condition ∼2m a parallel implementation
of gzip

fft6 2.0 C/Fortran77 OpenMP barrier ∼30s implementation of Bailey’s
6-step fast Fourier trans-
formation algorithm

ffmpeg 49.0.2 C pthreads semaphore ∼30m a fast video and audio con-
verter

Table X. The platform design space simulated using ReSP.

Parameter Name Domain

# of PEs {1,2,3,4,8}
PE Frequency {100,200,250,300,400,500} MHz
L1 Cache Size {1,2,4,8,16,32} KByte(s)
Bus Latency {10,20,50,100} ns
Memory Latency {10,20,50,100} ns
L1 Cache Policy {LRU, LRR, RANDOM}

used to perform the simulations, providing a set of configurable parameters, listed in
Table X. ReSP provides values for execution time and power consumption, which were
used as the performance metrics for all optimization algorithms in our experiments.

The three applications used for testing are, more specifically, two large applications
and a small benchmark, for which exhaustive search was possible, as listed in Ta-
ble IX. emphffmpeg, a video transcoder, was used to convert a small clip from MPEG-1
to MPEG-4, and pigz, a parallel compression algorithm, was used to compress a text
file. The small benchmark consists of an implementation of Bailey’s 6-step FFT algo-
rithm (fft6). All applications are data-parallel and are targeted towards a homogeneous
shared-memory multi-processor platform (N processors accessing a common memory
via bus). ffmpeg and pigz are implemented using pthreads, they create a set of working
threads equal to the number of available processors and dispatch independent data to
each thread. fft6 uses OpenMP, with loop parallelization and static scheduling. These
applications were specifically chosen in order to guarantee the maximum variability
in their behaviour, in fact all applications use a different synchronization mechanism
and require very different evaluation times.

The platform was explored using the parameters listed in Table X with a result-
ing design space of 8640 points2, comparable with similar works (e.g. 6144 points in
[Sheldon et al. 2007]). and the exhaustive exploration of any medium/large applica-
tion would require an unfeasibly long simulation time (e.g. roughly two months for
ffmpeg). Even the full exploration of the simple fft6 benchmark required six days of
uninterrupted simulation. To gather sufficient data for a statistical analysis, each of
the 3 benchmark applications was optimized 10 times with each exploration algorithm
(N = 30 executions for each algorithm).

According to Taghavi and Pimentel [2011], the quality of the result of a multi-
objective optimization algorithm is two-fold: 1) solutions should be as close as possible
to the actual Pareto set, and 2) solutions should be as diverse as possible. Therefore,
no single metric is sufficient in assessing the quality of the discovered Pareto set.

2It is worth noting that bus and memory latency are not realistic parameters, but they enlarge the design
space to better test the proposed algorithm. The linear dependence with performance prevents any strong
biasing of the results.
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We use the three metrics presented in [Erbas 2006] to compare the relative quality
of the approximate Pareto sets obtained by each algorithm:

— ADRS – The Average Distance from Reference Set is used to compare the approxi-
mated Pareto-sets with the best Pareto set found combining the results of all exper-
iments. This approximates the distance of a considered set from the Pareto-optimal
front, and should be minimized.
According to its definition in [Zaccaria et al. 2010], the ADRS between an approxi-
mate Pareto set Λ and a reference Pareto set Π is computed as:

ADRS(Π,Λ) = 1

∣Π∣ ∑a∈Π
(min

b∈Λ
{δ(b,a)}) (1)

where the δ function stands for:

δ(b,a) =maxj=1,..,m {0,
φj(a) − φj(b)

φj(b)
} (2)

Parameter m is the number of objectives and φi(a) is the value of the i-th objective
metric measured in point a.

— Non-uniformity – We measure how solutions are distributed in the design space.
Lower non-uniformity means a more evenly-distributed approximate Pareto-set
that better estimates the optimal Pareto-set.
Given a normalized Pareto set Λ̄, where di is defined as the Euclidean distance
between to consecutive points (i = 1, .., ∣Λ̄∣ − 1), and d̂ is the average values of all the
d’s, non-uniformity [Erbas 2006] can be computed as:

∣Λ̄∣−1

∑
i=1

∣di − d̂∣√
m(∣Λ̄∣ − 1) (3)

— Concentration – We measure the span of each Pareto-set with respect to the range
of the objectives. The lower the concentration, the higher the spread of the Pareto-
set and the better coverage of the range of objectives.
Given a normalized Pareto set Λ̄, where φmin

i is defined as min{φi(a) s.t. a ∈ Λ̄}
and φmax

i is defined as max{φi(a) s.t. a ∈ Λ̄}, concentration [Erbas 2006] can be
computed as:

m

∏
i=1

1

∣φmax
i − φmin

i ∣ (4)

6. EXPERIMENTAL RESULTS
6.1. Dependence on parameters and initial setup effort
All the examined algorithms differ in the way they converge to an approximate Pareto
front, and the quality of their results depends on a number of different parameters,
making a fair evaluation difficult to implement. There is no common rule for the choice
of each algorithm’s parameters: these range from four to twelve, and they can be any-
thing from integers to the choice of an interpolation function. The selection of the
parameters that are optimal to a specific optimization problem requires either exper-
tise or it can be calculated by meta-exploring (also known as parameter screening) the
parameters on the target design space, i.e. running multiple explorations while chang-
ing the parameters to optimize the result. Either way, finding the optimal parameters
usually requires trial and error. The Effort column of Table XI qualitatively presents
the tuning cost required by each algorithm.
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Fig. 1. The simulated multi-core processor architecture and its parameters.

Algorithms of classes 1 and 2 require few parameters (such as population size, mu-
tation factors, initial temperature, etc.), and are generally robust to parameter choice.
This means that small changes will not dramatically affect the outcomes of the ex-
ploration, although there is no guarantee that a given parameter choice will lead to
optimal results. Their parameters have no direct link to any knowledge of the design
space (e.g. initial temperature for MOSA and NSGAII), and can be determined only
by experience or guesswork, rendering the best combination very difficult to obtain
without screening and additional evaluations. In this work, we determined the best
parameters via screening, which required running several thousand evaluations.

Algorithms like APRS do not require any special tuning, and rely on pre-determined
heuristics, making their setup effort minimal. It is worth noting that both class 1 and
2 algorithms do not guarantee convergence to the optimal Pareto set and require that
the user specify a maximum number of iterations in addition to any other stopping
condition (e.g. when the results do not vary for more than two iterations).

Algorithms of class 3 demand a higher setup effort: the choice of a proper metamodel
for a design space requires some expertise and an initial screening (and therefore addi-
tional evaluations) to properly determine which parameters are the most significant.
Each metamodel needs specific additional parameters that are loosely linked to the
designer’s expertise of the design space. For our experiments we relied on the results
described in Palermo et al. [2009], and we chose the Central Composite Design using a
neural network (NN) interpolator. However, the NN produced results with a very high
variance, with ADRS ranging from 0% to 160%, making the use of this interpolator
impractical. We found the Shepard interpolation much more effective, although it re-
quired to determine the value of a power parameter, which expresses how jagged is the
response surface of the design space. A low value of this power parameter will produce
a smooth interpolation, while a higher value could better follow a more jagged curve,
but could also introduce overfitting. We effectively replicated the results of Palermo
et al. [2009] on our design space using a power of 16, which was found by parameter
screening (∼ 103 evaluations).

Finally, algorithms of class 4 require a bound to be associated to the effects of param-
eter variations on the configuration’s metrics. These bounds are left to the designer’s
experience, or can be determined via statistical modelling. This means detailed anal-
ysis of each design space, and large setup effort. The main difference between MDP
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Table XI. A qualitative analysis of the chosen algorithms: setup effort, number of evaluations for 1% ADRS, number of Pareto
points found, scalability

Acronym Class Effort Evaluations Pareto Points Scalability

APRS [Zaccaria et al. 2010] 1 ☆ ☆☆☆☆☆ ☆☆ ☆

MOMSLS [Jaszkiewicz and Dbrowski 2005] 1 ☆ ☆☆☆ ☆ ☆☆☆

MOPSO [Palermo et al. 2008] 1 ☆☆ ☆☆☆☆ ☆☆☆ ☆☆☆☆

MOSA [Ulungu et al. 1999] 1 ☆☆☆ ☆☆☆☆ ☆☆☆ ☆☆☆☆

PSA [Czyzak and Jaszkiewicz 1998] 1 ☆☆☆ ☆☆☆ ☆ ☆☆☆☆

SMOSA [Serafini 1994] 1 ☆☆☆ ☆ ☆ ☆☆☆☆

MOGLS [Ishibuchi and Murata 1996] 2 ☆☆ ☆☆☆ ☆☆☆ ☆☆☆☆

IMMOGLS [Ishibuchi and Murata 1998] 2 ☆☆ ☆☆☆ ☆☆ ☆☆☆☆

NSGA [Srinivas and Deb 1994] 2 ☆☆☆ ☆☆☆ ☆ ☆☆☆☆

NSGAII [Deb and Goel 2001] 2 ☆☆☆ ☆☆☆☆ ☆ ☆☆☆☆

PMA [Jaszkiewicz 2004] 2 ☆☆ ☆☆☆ ☆☆ ☆☆☆☆

SPEA [Zitzler and Thiele 1999] 2 ☆☆ ☆☆☆ ☆☆☆ ☆☆☆☆

ReSPIR [Palermo et al. 2009] 3 ☆☆☆☆ ☆☆ ☆☆☆☆ ☆☆☆

MDP [Beltrame et al. 2010] 4 ☆☆☆☆☆ ☆ ☆ ☆☆

MOMDP [Beltrame and Nicolescu 2011] 4 ☆☆☆☆☆ ☆ ☆☆☆ ☆☆☆

and MOMDP is that the former is fundamentally a single-objective optimization algo-
rithm. To effectively discover a Pareto-set, MDP “sweeps” the design space according
to a set of scalarizing values that express the desired trade-off between the different
objective functions. To determine the size and values of these scalarizing values for our
design space, hundreds of additional evaluations were necessary. MOMDP does not re-
quire this screening, and its only parameter (the accuracy λ) is in fact the average
simulation error, and can be chosen without effort.

It is worth noting that designer experience can reduce or remove the need for pa-
rameter discovery activities for all the aforementioned algorithms.

6.2. Estimation of the Number of Evaluations
In our experiments, we have tuned each algorithm parameters to obtain the best re-
sults for design space described in this paper, and we do not include the evaluations
needed for screening and initial parameter estimation. Concerning ADRS, since ex-
haustive search is not possible, we compare the Pareto set generated by each algo-
rithm with the best Pareto set found compounding all evaluations performed by all
algorithms, which covers a sizable portion of the entire design space (around 30%).

Figure 2 shows the percentage of the design space (i.e. the number of evaluations
divided by the number of points in the design space) explored by each algorithm in
order to reach an ADRS of approximately 1% on average. Note that it was not pos-
sible to have all the algorithms converge to the exact same quality result, and some
algorithms show high variability. In fact, SMOSA and NSGA do not often converge to
acceptable solutions. The final accuracy values obtained are shown in Figure 3. Please
note that the histograms and the error bars in Figures 2 to 6 show average values and
standard deviations, respectively, for each algorithm over 30 experiments. No negative
percentage was actually registered during the experiments

Figure 2 shows that the improvement can be worth the extra setup effort for class
3 and 4 algorithms: MDP, MOMDP and RESPIR have a factor 10 reduction in the
number of evaluations, and a much tighter convergence (i.e. smaller variance of the re-
sults). Concerning class 2 algorithms, the performance is very similar, with IMMOGLS
appearing to have the best combination of accuracy, number of evaluations and vari-
ance. APRS still provides excellent results given the zero-effort setup, although with
at least twice as many evaluations when compared to class 2 algorithms.
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Fig. 2. The percentage of points in the design space evaluated by each algorithm for similar levels of accu-
racy (around 1%).

6.3. Characteristics of the Resulting Approximate Pareto-set
Figure 4 shows the number of Pareto points found by each algorithm, normalized by
the average found for each benchmark to allow for global comparison.

Most algorithms appear to not have any statistically significant difference, with the
exception of RESPIR, which finds 25% more points than all the other algorithms on
average, but with a slightly higher variance. Once again, SMOSA and NSGA display
the poorest results. It is worth noting that some of the points found by RESPIR are
Pareto-covered by the points found by the other algorithms: the number of points on
the actual Pareto curve is smaller than what found by RESPIR.

Concerning non-uniformity and concentration, all algorithms behave similarly, cov-
ering the design space fully and without concentrating on specific areas. We could not
report any statistically significant difference between the algorithms, with the only ex-
ception of SMOSA and NSGA, which show worse results coupled with high variance.
Results are presented in Figure 5 and Figure 6.

6.4. Scalability
The scalability column of Table XI refers to how the needed effort scales with the
size of the design space: more scalable algorithms can be applied to more complex
design spaces with lower effort. To test the effective scalability of each algorithm, we
progressively increased the size of the design space, starting with three parameters
and adding the remaining, three one by one. Similarly, we started with three values of
each parameter and then increased their number progressively.

Most algorithms of classes 1 and 2 are very scalable: the number of parameters
or the number of values per parameter do not affect the overall result, even though
the number of additional evaluations needed grows proportionally with the number of
parameters (i.e. remains around ∼ 10 − 15% of the design space).

Although APRS require little setup effort, its applicability to large design spaces
cannot be guaranteed. In fact, the already very high number of evaluations required
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RESPIR

M
OSA

M
OM

DP

M
OPSO

SPEA

IM
M

OGLS
APRS

PM
A

NSGAII
M

DP
PSA

SM
OSA

NSGA

M
OM

SLS

M
OGLS

0

0.5

1

1.5

# OF PARETO POINTS

ra
ti

o
to

av
g.

Pa
re

to
po

in
ts

Fig. 4. The average number of points in the approximate Pareto set found by each algorithm, normalized
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Fig. 7. 3D representation of the algorithms performance showing % of the design space explored in order
to reach convergence, the number of Pareto points (w.r.t the average number) and the ADRS error metric
(NSGA, PSA and SMOSA are omitted because of their large ADRS). The number after each algorithm name
indicates the its class.

increases exponentially with the design space size, practically limiting its use to small
design spaces with fast evaluations.

RESPIR (class 3) scales well to design spaces with many parameters, but only if few
values per parameter are present. This is due to one of the main limitations of central
composite design: it can only consider three levels for each parameter, therefore re-
ducing the accuracy of the method in presence of many parameter values, especially if
they lead to non-linear behaviour. The number of evaluations for convergence remains
∼ 4% of the design space.

Finally, class 4 algorithms scale orthogonally with respect to class 3: they scale well
with the number of values per parameter, but not when the number of parameters
increase. While adding a parameter require defining new bounds, adding new values
comes without effort, and the number of evaluations needed increases less than lin-
early [Beltrame et al. 2010]. One drawback of MDP when compared to MOMDP is that
it requires the estimation of an additional parameter (α, see Beltrame et al. [2010])
when increasing the size of the design space, which might require additional evalua-
tions.
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7. DISCUSSION
The selection of the best algorithm for a particular application is difficult, and re-
quires a trade-off between setup effort, scalability, expected number of simulations
and expected accuracy. Given the experiments shown in Section 6, one can draw some
general guidelines according to the cost of each evaluation (e.g. simulation time) and
the size of the design space.

Higher evaluation costs make algorithms requiring a low number of simulations
more appealing, even in case of a high upfront setup cost. On the contrary, if each
evaluation has a very small cost, one might want to trade-off a higher number of eval-
uations with a no-effort setup. Similarly, large design spaces favor scalable algorithms,
while smaller spaces do not justify the extra work to apply sophisticated algorithms.

In order to quantify the actual convergence time of an algorithm i we have to take
into consideration the design space size (∣S∣ points), the time required by each sim-
ulation/evaluation (Tsim seconds), the percentage of the design space explored before
reaching convergence (νi) and the set-up time SETUPi of the algorithm:

ACTUALi = (νi × ∣S∣ × Tsim) + SETUPi (5)

The values of νi’s are reported in Figure 2. Regarding the SETUPi values, we trans-
lated the qualitative information in Table XI into a 10’-to-30hrs range: we have ob-
served during our experiments that algorithms having one “effort star” can be set-up
in a few minutes while algorithms with five “effort stars” require more than a day of
work.

Figure 8 presents four plots having the size of the design space on the x axis and the
time required by each simulation on the y axis. In each plot, areas are labelled with
the name of the more suitable algorithm according to Equation 5. Subplots (a) and
(b) report the result for algorithms able to obtain ADRS of about 1%, whether domain
knowledge is available (a), or not (b). Subplots (c) and (d) relax the ADRS requirement
to about 5%.

Whether or not domain knowledge is available, Multi-Objective Multiple Start Lo-
cal Search (MOMSLS) and Adaptive Windows Pareto Random Search (APRS) are the
most appealing solutions for small to medium design spaces with non-expensive evalu-
ations. As we explained in section 6, the APRS algorithm is a heuristic-based one and
it requires very little setup effort, making it the ideal choice when simplicity is val-
ued and there is no specific need for more efficient but also more complex approaches.
MOMSLS is considerably faster but also more likely to produce a greater ADRS.

When domain knowledge is available, the Multi-Objective MDP algorithm
(MOMDP) [Beltrame and Nicolescu 2011] clearly shows better performance, both in
term of fast convergence to a very small ADRS and quality Pareto set, in large design
spaces with high cost evaluations.

When one cannot obtain or exploit domain knowledge, the choice is split between
the very high-quality Response Surface Pareto Iterative Refinement (RESPIR) algo-
rithm and the Ishibuchi-Murata MO Genetic Local Search (IMMOGLS) algorithm.
Both these algorithms are suited for very large design spaces.

However, it is worth noting that the IMMOGLS algorithm usually requires a larger
number of evaluations, therefore is not recommended when dealing with high cost
simulation. Pareto Simulated Annealing (PSA) is a valid alternative to IMMOGLS
when a larger ADRS is acceptable.

What we can conclude from Figure 8 is that algorithms with small set-up times (i.e.
the ones in classes 1 and 2) are especially suitable for simple problems with relatively
small design spaces and/or short simulation times. On the other hand, complex algo-
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Fig. 8. Recommended algorithms for different design space size, simulation time and desired ADRS,
whether domain knowledge is available or not. The number after each algorithm name indicates its class.

rithms in classes 3 and 4 always compensate for their longer configuration times when
the exploration problem is difficult enough.

These recommendation are qualitative, but do take into account all the parameters
shown in Section 6.

8. CONCLUSIONS
Concluding, this paper presented a classification and comparative analysis of fifteen
of the best recent multi-objective design exploration algorithms. The algorithms were
applied to the exploration of a multi-processor platform, and were compared for setup
effort, number of evaluations, quality of the resulting approximate Pareto set, and scal-
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ability. The results give guidelines on the choice of the proper algorithm according to
the properties of the design space to be addressed. In particular, we have determined
the most promising algorithms when considering design space size and evaluation ef-
fort.
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