
Embedded System Verification Through Constraint-Based Scheduling
Olfat EL-Mahi, Gilles Pesant, Gabriela Nicolescu and Giovanni Beltrame

Department of Computer and Software Engineering
École Polytechnique de Montréal, Québec, Canada

(olfat.ibrahim, gilles.pesant, gabriela.nicolescu, giovanni.beltrame)@polymtl.ca

Abstract— Verification has become one of the main bottle-
necks in the design process of embedded systems, particu-
larly for Multiprocessor Systems-on-Chip (MPSoCs). Efficiently
proving the correctness of a design is of extreme importance
to reduce cost and time-to-market. Simulation is a common
verification method, but complex systems usually require long
simulation times. This work advocates Constraint Programming
(CP) as a powerful tool for the verification of performance
metrics of MPSoCs. Our methodology was evaluated using
streaming applications mapped onto a target MPSoC. The
resulting constraint-based scheduling problem allowed us to
identify performance constraint violations in a fraction of the
time required by simulation-based verification.

I. INTRODUCTION

Multiprocessor System-on-Chip (MPSoC) designs have
become a very popular choice for modern embedded sys-
tems [1]. These designs use complex on-chip networks to
integrate different programmable processor cores, specialized
memories, and other components on a single chip. The
parallel nature of MPSoCs makes verification a challeng-
ing task, in particular for communication and multimedia
applications. This is due to the non-functional constraints of
hardware and software modules, such as processor speed,
buffer size, energy budget, and scheduling policy [2], and
the combination of multiple applications.

System-level design and verification methodologies such
as Constraint Programming (CP) have been introduced as a
solution to handle the design complexity of embedded sys-
tems [2]. The power of CP comes from the fact that validity,
quality, and test specification requirements for any system are
naturally modelled through constraints, which are naturally
represented as a Constraint Satisfaction Problem (CSP). In
this paper, we introduce a constraint-based scheduling model
for concurrent streaming applications on MPSoCs with and
without considering processor scheduling techniques. Our
aim is to identify which critical system parameters (e.g.
buffer size) can lead to unsatisfied application constraints.
Even though our proposed models can be used with various
applications, different input streams, and different architec-
tures, for clarity we will explain the model in a chosen case
study.

This paper is structured as follows: the related work is
introduced in Section II; our MPSoC architecture platform is
described in Section III; Section IV outlines our constraint
based scheduling model and the associated constraint pro-
gramming techniques;model; Section V presents our exper-
imental results; finally, Section VI draws some concluding

remarks.

II. RELATED WORK

Simulation-based verification is a well known method to
determine the response time of embedded systems. Simu-
lation is the process of mimicking key characteristics of a
system or process. It can be performed at different levels
of abstraction. At one end of the spectrum, tools such as
Wind River Simics [3] or ReSP [4] simulate a complete
system (software and hardware) in detail. Such simulators
are used for low-level debugging or for hardware/software
co-design. This type of simulation can trade off speed and
accuracy: it can yield accurate timing analysis with long
simulation time, or focus on speed by limiting its scope to
functional simulation. At the other end of the spectrum we
find scheduling simulators, which abstract from the actual
behaviour of the system and only analyze the scheduling of
the system’s tasks, specified by key scheduling attributes and
execution times.

System verification technology has recently shifted to-
wards the use of Constraint Programming (CP) for random
functional test generation. For example, several constraint-
based generators were developed at IBM: X-Gen [5] for
system-level verification, GenesysPE [6] at the architecture
level, Piparazzi [7] at microarchitecture level, FPGen [8] and
DeepTrans [9] for hardware units, and SoCVer [10] for SoCs.
These works use constraints both to describe the hardware
system and to express which areas of the design should
be tested. They also use randomness to achieve a balanced
distribution of the generated test data in these areas. Results
show this relatively new trend as a promising alternative to
simulation-based verification of complex hardware systems.

Systems handling stream applications like MPEG-4 or
VOIP, for example, define a pipeline work flow with strict
ordering of data transfers between system components. Such
systems typically employ a single controller core and a spe-
cific software model. Verification of these systems requires
creating a system-level scenario that takes into account the
system level workflow [10], [11], [12], with Some random
variance allowed. Such systems are also decoupled, and
allow a large variability in the interactions between the
cores, supporting a large number of system configurations.
It is important to verify the conjunction of functionalities of
the different components, since errors are usually triggered
by specific interactions. Some errors can only be exposed
if the components interact locally in time and space, that



2

is, if the interaction involves using the same resources at
the same time. One also has to consider multiple system
resources such as CPUs, disks, and network links that require
coordinated scheduling to meet the end-to-end performance
requirements of streaming applications.

In general, scheduling problems are computationally chal-
lenging, and have been subject of active research in Con-
straint Programming (CP) and in Operations Research (OR)
for many years [13]. Constraint programming has been
used more specifically in the scheduling of task graphs
on MPSoCs without violating computation capacity and
communication bandwidth [14], [15], and for data-stream (or
cyclic) scheduling [16].

Verification of embedded streaming applications in com-
munication and multimedia domains on MPSoCs has been
widely explored by using the Synchronous Data Flow (SDF)
model [17], [18]. Lee and Messerschmitt [17] first present
general techniques to construct periodic admissible parallel
schedules (PAPS) on a limited number of multiprocessors.
Govindarajan et al. [19] propose a linear programming
formulation to obtain maximal throughput and minimized
buffer cost for SDF models without computation (number
of processors) constraints. Eles et al. [20] first address the
scheduling on distributed systems with communication pro-
tocols optimization. Stuijk [18] propose a mapping and TD-
MA/list scheduling design flow for throughput constrained
SDF applications on MPSoCs. Zhu [21] propose a design
optimization framework for adaptive real-time streaming
applications based on reconfigurable devices. They further
investigate buffer minimization and task scheduling issues
for streaming applications in [2].

This paper extends these works by introducting multi-
stream models on MPSoCs using CP. This work improves
on [22], which did not scale well due to the high the number
of tasks in the model (typically hundreds of thousands). In
this paper, we propose a way to significantly reduce the
number of tasks needed to be scheduled (a few hundreds),
without any violate to the system constraints (due to some
new constraints to ensure system validity). Our results show a
net performance gain compared to previous work. Compared
to [22], we also considered the scheduling technique used by
the operating system as an integral part of our model.

III. PLATFORM ARCHITECTURE

In this paper, we consider the regular 2-D mesh Net-
work On Chip (NoC) As a case study, we used MPEG4
and VOIP applications (see Figure 1). The MPEG4 was
tested with five different standard frame sizes (QCIF,
SDTV, HDTV, HDTV1, and HDTV2) where frameSize =
pixelDepth×Width×Height. The VOIP application was
tested in two different cases: a non-restricted delay case
which represents applications with buffering flexibility (such
as messaging), and a restricted delay case for applications
with hard deadlines and quality assurance.

The system architecture consists of: one shared memory
(SH) acting as a receiver for different application streams,
two processing elements (PE1, PE2) each with its own

private memory to generate the output stream, one frame
buffer for video display (GCr), and an audio output port
(AuP). The components are connected via 2x2 routers (RS
= Router at SH’s output, R11 = Router at PE1’s input, R12
= Router at PE1’s output, R21 = Router at PE2’s input, R22
= Router at PE2’s output, RG = Router at the GCr’s input).

The inputs to the system are packetized trace files for both
applications. This makes the application more realistic and
allows the use of different streams with different data rates.

IV. CONSTRAINT-BASED SCHEDULING APPROACH

The binding of streaming applications onto the target
MPSoC architecture is a process with resource limitations
and real-time (RT) requirements. Here we use a constraint-
based formulation to model the application-to-architecture
mapping, communication routing, flow control, and computa-
tion scheduling. We mapped streaming applications onto the
target MPSoC architecture by modelling them as Constraint-
based scheduling problems. Frames from these applications
are translated to sets of tasks. The output either gives a
suitable schedule for the input stream or it indicates that
no solution exists. Our model was implemented using IBM
ILOG OPL IDE v6.3 [23] and used the default search.

A. Stream model

Among standard types of scheduling problems, our prob-
lem is closest to flow shop scheduling, known to be NP-hard.
The flow shop scheduling problem consists of a finite set of
jobs to be processed on each of a finite set of machines.
Jobs have the same processing order through the machines
but the order in which uninterruptible jobs are processed
on a given machine can vary between machines. Machines
generally have a processing capacity and each job-machine
pair has its own capacity demand and processing time.

We can see our problem follow the same logic. we have
scheduling problem consists of a finite set of frames to
be processed on each of a set of system components or
resources. each frame-resource pair called task. frames have
the same processing order through the resources but the order
in which non-pre-emptive tasks are processed on a given
resource can vary between resources. resources also have
a processing capacity and each task has its own capacity
demand and processing time.

Following the DUT in Figure 1 we have two streaming
applications MPEG4 and VOIP (will be referred to as M
and V in the equations respectively), each with two sets
of frame type (Original Fm = {fmi }

ϕm

i=1 and F v = {fvi }
ϕv

i=1,
Decompressed Fm

′
= {fm′i }

ϕm′
i=1 and F v

′
= {fv′i }

ϕv′
i=1),

where ϕm, ϕv, ϕm′ , ϕv′ represent the number of original and
decompressed frames respectively for applications MPEG4
and V OIP . Note that for our case study since we are dealing
with frames not packets so the number of original frames is
the same as the number of decompressed frames they differ
only on size ( i.e. ϕm = ϕm′ and ϕv = ϕv′ ).

Each packet in each stream will be treated as a sequence
of tasks, and each task is processed using a single resource.



3

Fig. 1: MPEG-4 and VOIP packet flow in MPSoC architecture.

Additional constraints come from the system architecture and
applications.
We make the following reasonable assumptions in order to
simplify our model:

1) The most critical system resources are buffer capacity
and processor frequency so these will be represented
explicitly as resources in our scheduling problem. The
NI will be expressed instead by a minimum temporal
separation between tasks processed on two consecutive
components. Shared memory is not an issue: it is big
enough for all packets to stay there as long as they
need without violating other constraints.

2) Each packet can be put in one memory location or
buffer location.

3) Each memory or buffer location can take only one
packet.

4) If a packet is received while the private memory, shared
memory, or router buffer is full then it is dropped.

5) The processor speed is the same as the packet trans-
mission speed (bit-rate per second).

6) The shared memory is embedded DRAM with a (sin-
gle) integrated controller.

7) Packets use Shortest path first in routing decisions.
Then the DUT set of resources is { RS, R11, PE1, R12,

R21, PE2, R22, R3, GCr, AuP } (see section III for details
)

where buffers are represented in routers, processors, the
graphics card, and the audio port. Two properties are asso-
ciated to each resource: speed and capacity.

A packet travelling through the system uses different
resource chains from the receiver (shared memory) to one
of the two processors and finally to its output device. The
existence of more than one processor makes some of the
resources alternatives. For example 〈RS,R11, PE1〉 and
〈RS,R21, PE2〉 are alternative resource chains for original
packets before decompression.

B. Decision Variables

Each frame (e.g. fmi ) is further decomposed into a set of
tasks (e.g. Tmi ) one task per possible resource in the resource

chain. We denote by λx the number of tasking in T xi . Note
that in any solution some tasks will not be scheduled sine
they are associated to alternate resource chains. 1

Our set of decision variables is then:

T =
⋃

1≤i≤ϕm

Tm
i ∪

⋃
1≤i≤ϕv

Tm′
i ∪

⋃
1≤i≤ϕm′

T v
i ∪

⋃
1≤i≤ϕv′

T v′
i (1)

where

Tmi = {tmi,k : 1 ≤ k ≤ λm}, Tm
′

i = {tm
′

i,k : 1 ≤ k ≤ λm′},

(2)

T vi = {tvi,k : 1 ≤ k ≤ λv}, T v
′

i = {tv
′

i,k : 1 ≤ k ≤ λv′}.
(3)

As usual to each task we associate start, end which are
the time the task starts and ends being processed on the
corresponding resource respectively, demand which is the
space it occupies on the component while being processed by
it, and presence which indicates whether the task is actually
scheduled. It is fixed to True for tasks associated with a
compulsory resource (i.e. not on an alternative resource
chain).

Two last decision variables were used: StartAfterM and
StartAfterV which are the time before starting display for
MPEG4 and VOIP applications respectively (once enough
frames have been cached) in order to respect their frame
rate.

C. Constraints

Basically we have four main sets of constraints
controlling capacity, duration, scheduling start and end time,
and dependency. The constraints are chosen to ensure both
system and application rules are respected. We do not list
all constraints but give a representative of each type of
constraint.

1In ILOG Solver those are handled as ”optional” tasks.



4

a) Capacity Constraints: Given D the simulation
deadline, specify the different resources needed by different
tasks and the allowed maximum capacity for the constraints.

Constraint 1: Resource capacity must be respected at all
time. Note That ILOG solver use a specialized, optimized
constraint named ”pulse” to handle such constraints globally
[23].

∑
1≤i≤ϕm

tmi,RS .demand ≤ RS.Capacity 0 ≤ t ≤ D

such that tmi,RS .start ≤ t ≤ tmi,RS .end

Constraint 2: Alternative tasks must be processed on only
one of the alternative resources.
tmi,R11.presence 6= tmi,R12.presence, 1 ≤ i ≤ ϕm

tmi,R11.presence = tmi,PE1.presence = tm
′

i,PE1.presence = tm
′

i,R12.presence,

1 ≤ i ≤ ϕm

tmi,R21.presence = tmi,PE2.presence = tm
′

i,PE2.presence = tm
′

i,R22.presence,

1 ≤ i ≤ ϕm

b) Duration Constraints: Specify the processing
duration for different tasks.

Constraint 3: As the task duration is not only the time
a certain resource needs to process it but also we need to
consider the delays added if this was sent as packets and
also that any delay on a previous resource must affect the
duration on the next one. Here we need to know the number
of packets on each frame:

pmi = fmi .size/P.size, 1 ≤ i ≤ ϕm
pvi = fvi .size/P.size, 1 ≤ i ≤ ϕv
pm
′

= fm
′
.size/P.size pv

′
= fv

′
.size/P.size

Note that the original packets have a different number
of frames depending on the percentage of compression,
whereas the number of packets for the decompressed
frames is fixed (to the display frame size). Let Υm

i be
the time original packets for application MPEG4 arrive in
the system where 1 ≤ i ≤ ϕm , ShSpeed and NISpeed
represent the shared memory and NI the speed define the
minimum temporal separation needed before packets enter
RS. Because the first task cannot consider a delay from the
previous components its duration is calculated differently:

tmi,RS .duration ≥
fi.size

RS.Speed
+ linkDelay ∗ pm

i + tmi,RS .start

−(Υm
i +

fi.size

SHSpeed
+

fi.size

NISpeed
), 1 ≤ i ≤ ϕm

All other components follow the same rule so here we
show only the duration for the second task.

tmi,2.precence = 1 ⇒ tmi,2.duration ≥
fi.size

RS.Speed
+ linkDelay ∗

pm
i + tmi−1,RS .duration

−(
fi−1.size

RS.Speed
+ linkDelay ∗ pm

i−1), 1 ≤ i ≤ ϕm

Fig. 2: MPEG-4 Group Of Picture order and frame dependencies

c) Scheduling start and end time Constraints: Specify
the processing start and end time for different tasks.

Constraint 4: Given D the simulation deadline, frames
must end processing before the simulation deadline.

tmi,λm
.end ≤ D, 1 ≤ i ≤ ϕm

Constraint 5: Packets must not start processing on the
system before their arrival time. Here we need only to
restrict the start on the first resource since packets flow in
the system sequentially.

tmi,RS .start > Υm
i +

fm
i .size

ShSpeed
+

fm
i .size

NISpeed
+ 2∗ linkDelay ∗pmi ,

1 ≤ i ≤ ϕm

Constraint 6: Given MaxD the maximum time a certain
frame can stay on one resource, frames must not stay on
a certain resource more then the allowed maximum delay.
Here we have two different types of constraints: the first
one to ensure the temporal separation between frames’ start
time and their appearance on the first resource RS cannot be
more than 2MaxD since it passes through two components
(SH and NI); the second one to restrict MaxD on each
resource separately.

tmi,RS .start−Υm
i ≤ 2MaxD, 1 ≤ i ≤ ϕm

tmi,k.duration ≤MaxD, 1 ≤ i ≤ ϕm, 1 ≤ k ≤ λm

Constraint 7: Decompressed frames cannot start before
completely receiving their original frame; original frames
cannot end before starting their decompressed frames.

tm
′

i,1 .start ≥ tmi,t̂m .start + fi.size
PE.Speed

+ linkDelay ∗ pmi +

tmi−1,1.duration− (
fi−1.size

NI.Speed
+ linkDelay ∗ pmi−1), 1 ≤ i ≤ ϕm

tmi,t̂m .end ≥ tm
′

i,1 .start + P.size
PE.Speed

, 1 ≤ i ≤ ϕm

Constraint 8: All original frames are processed in
sequential order on the same component.

tmi,k.start ≤ tmi+1,k.start, 1 ≤ i ≤ ϕm − 1, 1 ≤ k ≤ λm

Constraint 9: Application MPEG4 uses a periodic pattern
known as a Group of Pictures (GOP)[24] that causes a
difference in the sequence of data transmitted and data
displayed: decompressed Frames must follow the order
1, 4, 2, 3, 7, 5, 6, 10, 8, 9, 13, 11, 12. We define the



5

corresponding permutation ρ to specify the new GOP frames
order (see Figure 2).

tm
′

ρi,k
.start ≤ tm′ρi+1,k

.start, 1 ≤ i ≤ ϕm, 1 ≤ k ≤ λm′

Constraint 10: Given LinkDelay the delay caused by
the frame transportation from one resource to the next, tasks
for a given packet are processed in order. Here we allow
tasks of one frame to start on the next resource as soon as
one packet has been processed.

tmi,RS .start+ LinkDelay + P.size
RS.Speed ≤ tmi,R11.start, 1 ≤ i ≤ ϕm

tmi,R11.start+ LinkDelay + P.size
R11.Speed ≤ tmi,NI11.start, 1 ≤ i ≤ ϕm

tmi,NI11.start+ LinkDelay + P.size
NI11.Speed ≤ tmi,PE1.start, 1 ≤ i ≤ ϕm

tmi,RS .start+ LinkDelay + P.size
RS.Speed ≤ tmi,R21.start, 1 ≤ i ≤ ϕm

tmi,R21.start+ LinkDelay + P.size
R21.Speed ≤ tmi,NI21.start, 1 ≤ i ≤ ϕm

tmi,NI21.start+ LinkDelay + P.size
NI21.Speed ≤ tmi,PE2.start, 1 ≤ i ≤ ϕm

tmi,k.end− tmi,k+1.start ≤ tmi,k.duration+ linkDelay, 1 ≤ i ≤ ϕm, 1 ≤

k ≤ λm

Constraint 11: Given τi the MPEG frames display time,
application MPEG4 decompressed frames must respect the
video display rate of 30 frames per second.

tm
′

i,t̂m′
.end = StartAfterM + τi, 1 ≤ i ≤ ϕm′

Constraint 12: Given UT a constant to ensure application
VOIP’s decompressed packets of the same frame respect a
rate of 50 audio frames per second.

tv
′

i,t̂v′
.end == StartAfterV + i ∗ UT, 1 ≤ i ≤ ϕv′

d) Dependencies Constraints: : Some of the tasks
depend on others.

Constraint 13: For application MPEG4, frames depending
on other frames must be processed on the same processor,
(see Figure 2). Constraints are shown for complete IPBB,
PBB, IBB sequences for simplicity but all cases are
considered in the model.

//IPBB
tm1,RS+1.presence = tmi,RS+1.presence, 1 ≤ i ≤ 4
//PBB,IBB
tmi,RS+1.presence = tmj,RS+1.presence, 5 ≤ i ≤
ϕm − 1, i ≤ j ≤ i+ 3

V. EXPERIMENTAL RESULTS

Our aim is to experimentally identify non-trivial cases of
system failure which are unlikely to be detected manually by
a Test Engineer and find other cases where there is a chance
of system success and where it is worth investing time for
testing it in higher detail. Particular interest is given to cases
that show the impact of competition between independent
applications sharing the same computational resources. All
experiments were run on an Intel Core i7 computer with

8GB RAM. The target parameters are shown in Table I.
The design space is explored by manually and sequentially
applying these parameters.

We tested our model with 25 different system configura-
tions both with Bus Delay 10ns and 100ns.

Results are shown in Figures 3 and 4 for different process-
ing element bandwidths increased in 2 to the power n where
n = 0, 1, 2, ..., 11 (on vertical axis) tested against different
architecture configurations (on horizontal axis), some for
application MPEG4 (with the five different frame sizes
where FS mean that results apply to all frame sizes), others
for application V OIP (with either a delay restriction like a
phone call, or some allowed buffering flexibility like voice
message, also RD mean that results apply to both versions),
separately and then combined, which is the most interesting
for us to study the impact of one application on the other.

We considers our model both with and without forcing a
processor scheduling policy namely Load Balancing.

We used three different colors to represent our results
for each architecture. ”Success” indicates the system did
find a solution at this level of detail and considering the
scheduling policy we used we can investigate it further,
”Failure” indicates a proven system failure, i.e. the solver
showed that there is no solution. ”TimeOut”, indicates that
the solver could neither find a feasible schedule nor prove
that there is none for this bandwidth within a 10 minutes
time limit.

Figure 3 shows results for the model (”none”, ”load bal.”)
when running only one application and Figure 4 show results
when combining the two applications.

Generally adding load balancing gives better results except
in some cases where it could not prove failure when we
combine both applications. But this is not important because
the ”none” results proves failure generally with any processor
scheduling policy.

Some tests gave straightforward results: both applications
will always fail if the private memory of the PEs is less than
3 KB and 6 KB for MPEG4 and VOIP, respectively. This is
due to inter- and intra-frame packet dependencies.

Other tests show how one application failure might affect
the other, when running simultaneously. For example, when
MPEG4 is dealing with an SDTV stream with a PE BW
of 64Mb/s, the non-restricted delay version of V OIP will
always fail. Similarly, the delay-restricted version of V OIP
will always fail when MPEG4 is processing a QCIF stream
with a PE BW of 64Mb/s.

But our methodology also allowed us to identify some
interesting cases. For example the combination of MPEG4
and V OIP will fail with a PE BW 11 Mb/s even if both
applications can be successfully scheduled independently,
meaning that our methodology can identify issues due to the
non-obvious interaction of multiple applications. (This case
is not shown in the figure; we narrowed in on this particular
critical point.)

Given that PEs need to be fast enough to produce the
required frame rate, one can devise the following empirical
rule: Fsfps/Ps

Outmax
> 1 with Fs, Ps the frame and packet size,

respectively, and Outmax the maximum processor output.



6

TABLE I: Design space for the experimental platform

Parameter From To Parameter Value
Processing Element (PE) Size 1.5KB 15KB Packet Size 1.5 KB
PE Band Width (BW) 1Mb/s 512Mb/s Num. of PEs 2
Bus Latency 10ns 100ns Memory BW 2 Gb
Max Allowed VOIP Delay 2ms 1s Buffer Size 1.5 KB
MPEG frames Size QCIF SDTV Simulation deadline 2 seconds

Fig. 3: Results for Application MPEG4 and VOIP separately

Fig. 4: Results for Application MPEG4 and VOIP combined

Hence the DUT should fail when running only MPEG4
using QCIF with a PE BW < 14.5 Mb/s. Nevertheless our
methodology shows that a PE BW = 11 Mb/s is sufficient
for the application. This shows that non-trivial optimizations
can be discovered as well with our methodology. Conversely,
for V OIP , a PE BW = 6.8 Kb/s should be sufficient, but
we can observe that in delay-restricted conditions the system
could not be scheduled with PE BW < 64 Mb/s. This shows
we can detect issues related to buffering and link delays.

Analysing our results we can propose recommended archi-
tecture to run these two applications with given requirements
as a minimum processor private memory of 6KB and a
reasonable processor bandwidth of 1 Gb/s to run the more
restricted application.

To test the performance of our methodology, we compared
it with the use of the ReSP MPSoC Simulation Platform [4].
When using FFMPEG, our system can detect system failure
in less than 15 seconds and verify system success in 10
minutes, while ReSP takes around 30 minutes to run a single

simulation.

VI. CONCLUSION AND FUTURE WORK

In this work we mapped streaming applications onto a
target Multi-Processor System-on-Chip (MPSoC) architec-
ture as a constraint-based scheduling problem. Our proposed
approach can be used with various applications, different
input streams and different architectures. Results show that
the methodology is able to identify system failure con-
ditions in a fraction of the time needed by simulation-
based verification. It gives the Test Engineer the ability to
explore the design space and deduce the best policy, also
it help choose the proper a recommended architecture for
the applications running. As a future work we will build
our model for already build architecture in market running
chosen applications and compare our model results with the
actual results.



7

ACKNOWLEDGEMENTS

We wish to thank Michele Lombardi for fruitful discus-
sions.

REFERENCES

[1] W. Wolf, “The future of multiprocessor systems-on-chips,” in Pro-
ceedings of the 41st annual Design Automation Conference. ACM,
2004, pp. 681–685.

[2] J. Zhu, I. Sander, and A. Jantsch, “Constrained global scheduling of
streaming applications on mpsocs,” in Proceedings of the 2010 Asia
and South Pacific Design Automation Conference. IEEE Press, 2010,
pp. 223–228.

[3] “Wind river simics full system simulator.” [Online]. Available:
http://www.windriver.com/products/simics/

[4] G. Beltrame, L. Fossati, and D. Sciuto, “Resp: a nonintrusive
transaction-level reflective mpsoc simulation platform for design space
exploration,” Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, vol. 28, no. 12, pp. 1857–1869, 2009.

[5] R. Emek, I. Jaeger, Y. Naveh, G. Bergman, G. Aloni, Y. Katz,
M. Farkash, I. Dozoretz, and A. Goldin, “X-gen: A random test-case
generator for systems and socs,” in High-Level Design Validation and
Test Workshop, 2002. Seventh IEEE International. IEEE, 2002, pp.
145–150.

[6] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv, “Genesys-pro: Innovations in test program generation for
functional processor verification,” Design & Test of Computers, IEEE,
vol. 21, no. 2, pp. 84–93, 2004.

[7] A. Adir, E. Bin, O. Peled, and A. Ziv, “Piparazzi: a test program
generator for micro-architecture flow verification,” in High-Level De-
sign Validation and Test Workshop, 2003. Eighth IEEE International.
IEEE, 2003, pp. 23–28.

[8] M. Aharoni, S. Asaf, L. Fournier, A. Koifman, and R. Nagel, “Fpgen-a
test generation framework for datapath floating-point verification,” in
High-Level Design Validation and Test Workshop, 2003. Eighth IEEE
International. IEEE, 2003, pp. 17–22.

[9] A. Adir, R. Emek, Y. Katz, and A. Koyfman, “Deeptrans-a model-
based approach to functional verification of address translation mech-
anisms,” in Microprocessor Test and Verification: Common Challenges
and Solutions, 2003. Proceedings. 4th International Workshop on.
IEEE, 2003, pp. 3–6.

[10] A. Nahir, A. Ziv, R. Emek, T. Keidar, and N. Ronen, “Scheduling-
based test-case generation for verification of multimedia socs,” in Pro-
ceedings of the 43rd annual Design Automation Conference. ACM,
2006, pp. 348–351.

[11] G. Berry, L. Blanc, A. Bouali, and J. Dormoy, “Top-level validation
of system-on-chip in esterel studio,” in High-Level Design Validation
and Test Workshop, 2002. Seventh IEEE International. IEEE, 2002,
pp. 36–41.

[12] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-chip verification:
methodology and techniques. Springer, 2001.

[13] M. Lombardi and M. Milano, “Optimal methods for resource allo-
cation and scheduling: a cross-disciplinary survey,” Constraints, pp.
1–35, 2012.

[14] L. Benini, M. Lombardi, M. Milano, and M. Ruggiero, “A constraint
programming approach for allocation and scheduling on the cell broad-
band engine,” in Principles and Practice of Constraint Programming.
Springer, 2008, pp. 21–35.

[15] P. Hladik, H. Cambazard, A. Déplanche, and N. Jussien, “Solving a
real-time allocation problem with constraint programming,” Journal
of Systems and Software, vol. 81, no. 1, pp. 132–149, 2008.

[16] A. Bonfietti, M. Lombardi, L. Benini, and M. Milano, “Global
cyclic cumulative constraint,” Integration of AI and OR Techniques
in Contraint Programming for Combinatorial Optimzation Problems,
pp. 81–96, 2012.

[17] E. Lee and D. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” Computers, IEEE
Transactions on, vol. 100, no. 1, pp. 24–35, 1987.

[18] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal, “Multiprocessor
resource allocation for throughput-constrained synchronous dataflow
graphs,” in Design Automation Conference, 2007. DAC’07. 44th
ACM/IEEE. IEEE, 2007, pp. 777–782.

[19] R. Govindarajan, G. Gao, and P. Desai, “Minimizing buffer require-
ments under rate-optimal schedule in regular dataflow networks,” The
Journal of VLSI Signal Processing, vol. 31, no. 3, pp. 207–229, 2002.

[20] P. Eles, A. Doboli, P. Pop, and Z. Peng, “Scheduling with bus access
optimization for distributed embedded systems,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 8, no. 5, pp.
472–491, 2000.

[21] J. Zhu, I. Sander, and A. Jantsch, “Buffer minimization of real-time
streaming applications scheduling on hybrid cpu/fpga architectures,”
in Proceedings of the Conference on Design, Automation and Test in
Europe. European Design and Automation Association, 2009, pp.
1506–1511.

[22] O. El-Mahi, G. Nicolescu, G. Pesant, and G. Beltrame, “Embedded
system verification through constraint-based scheduling,” in The 17th
IEEE International High Level Design Validation and Test Workshop
(HLDVT), 2012.

[23] I. I. Cplex, “12.1 reference manual,” URL {http://www. ilog. com},
2010.

[24] B. Haskell and A. Puri, “Mpeg video compression basics,” The MPEG
Representation of Digital Media, pp. 7–38, 2012.


