Exploring Spiking Neural Network on Coarse-Grain
Reconfigurable Architectures

Abstract—This paper presents the architecture and implemen- thereby enhance scalability. However, the NoC based solsiti
tation of neural networks on a Coarse-Grain Reconfigurable (using processor with every node) are inefficient and requir

Architecture (CGRA). In particular, we propose a mapping of ; : ;
Spiking Neural Networks (SNNs) on a CGRA, that guarantees complex switches. Therefore, while NoC based solutions pro

better performance in terms of throughput, latency, area, ad vide hig.h scglability, they are unable to provide the pafall .
power consumption (compared to existing FPGA based imple- Processing high speeds offered by the FPGA solutions. i thi
mentations). In our design we exploit various CGRA resource paper we explore the feasibility of implementing the neural
to mimic a complex network of neurons and synapses. To test networks on a CGRA. The proposed solution provides the
the effectiveness of our approach, we have used Dynamically har5iie| processing of FPGA based implementations with the
Reconfigurable Resource Array (DRRA). - - . - .
scalability similar to generic NoCs. Specifically, we catesi
a phenomenon known as Spike-Timing-Dependent Plasticity
(STDP) [8]. To evaluate experimentally the efficiency of the
Today, neural networks becoming an increasingly populproposed solution on a CGRA, we have chosen the Dynami-
technique to realize learning robotics. Use of neural net®/o cally Reconfigurable Resource Array (DRRA) [?Shami2012].
in robotics requires fast and efficient implementation -plaNevertheless, the results obtained in this paper shoukhess
forms. Recently, the increasing speed and high performanizly be applicable to most grid based CGRAs as well.
requirements, coupled with the demands for flexibility and This paper has two major contributions:

low non-recurring engineering costs, have made reconfig-1) we present architecture and implementation to realize
urable hardware a very popular implementation technology ' 3 spiked neural networks on a coarse grained reconfig-
for neural networks [1]. Today reconfigurable architecture urable array (CGRA);

enable partial and dynamic runtime self-reconfiguration [2 2) e analyze the scalability and overheads of the proposed

This feature allows the substitution of neural network on a  technique, on an actual CGRA called Dynamically Re-
hardware design implemented on this reconfigurable haelwar  configurable Resource Array (DRRA).

and therefore, a single device can be adapted to implement
various functionalities by simply uploading a new configura Il. PRELIMINARIES

tion based on neural network application. The reconfigerabl |n this paper we will attempt to implement phenomena
architectures can be classified depending on their gratyllarknown as Spiking Timing Dependent Plasticity (STDP) using
i.e., the number of bits which can be explicitly manipulategpiking Neural Networks (SNN). In order to verify our result
by the programmer. Coarse-Grained Reconfigurable Architaie CGRA platform we used named Dynamically Reconfig-
tures (CGRAs) provide operator level configurable funaionyrable Resource Array (DRRA). The computational systems
blocks, word level datapaths, and powerful and very aregased on SNN is getting critical requires improved and faste
efficient datapath routing switches. Compared to fine-@@incomputations. The CGRA becomes a promising solution for
architectures (like FPGAs) CGRAs enjoy massive reductigftoviding a scalable and robust interconnection fabricereh

of configuration memory and configuration time (two or morfore before explaining the hardware implementation we will

orders of magnitude [3]) as well as considerable reduction priefly describe the SNN and the STDP functionality.
routing and placement allocation. All this also results in a

significant reduction of the overall area (from 66 % to 99.08- Spiking Neural Network (SNN)
% [4]) and energy consumed per computation (from 88 % to Spiking Neural Networks is the latest generation of neural
98 % [4]), though at the cost of a loss in flexibility comparedetworks models [9]. Spiking neurons emulates the behavior
to bit-level operations. Therefore, CGRAs have been a stbjef biological neurons that communicate with electricalgasl
of intensive research since the last decade [4]. or spikes. The spiking neuron is modeled by a differential
Most of the existing works that attempt to speed up thequation that traces the changes of the potential of a neuron
neural network algorithm employ FPGAs [5], [6]. They speedver time [10]. The simplest and the most widely used Leaky
up computations by exploiting the parallel processingreffie Integrate and Fire model is presented in Equation 1. The
by the FPGAs. However, the FPGAs require fine granulpotentialV' integrates input spikes and leaks over time with
connectivity that is in efficient to handle the complex inter—bV component. Coefficient determines equilibrium point
connections required by the neural networks [7]. Compaseddnd coefficientb the speed of leakage. When the threshold
FPGAs, network-on-chip (NoC) simplify the connectivity] [7 potential is reached a neuron output a spike and its potentia
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: : . TABLE |
is reset. The neurons are connected in one-to-many fashion. LOCAL CONTROLLER FUNCTIONALITY

Each time a neuron produces a spike, it should be delivered ?oCOmponem Functionality |
all the co_nnected neurons. Ea_ch connection between neurofs () Send configware o DRRA
has a weight that defines the input to the neuron model from A system controller | COMputation layer

a particular spike. Spikes carry only events, synapses afe ggpﬁg"i?ﬂmemory partitions for each

responSibl_e for generating We_ight.ed inputs gnd fqr legrnin —prrA storage layer Store date for DRRA computation laye
Learning is performed by adjusting synaptic weights. The& DRRA computation layer] Perform computations

most widely used learning methods for SNN are Hebb’s based
rules. Hebb postulated that when one neuron assists in firing

=

another, the synaptic weight between them is strengthened DRRA storage
[11]. One of the most widely used models of Hebbian learning ._____I.__Igy_e_r_”____l
is exponential STDP rule shown in Equation 2 [10]. This rule igpg:iDAg’ZD:iApm. [ vemory
increases a synaptic weight if the time difference between a ‘oono DDE:D i | elements
output (post- synaptic) and an input (pre- synaptic) spikes System — ED DEED Conid E
is positive (i.e. when a pre- synaptic spike arrives before a controller L] lDDHDDD;i T celis
post- synaptic one) and vice versa. iooto DDEID !
iyl y
dv/dt =J+4+a—-0bV (1) DRRA computation
layer
Ajexp(— At/ry), if At>0. @) Fig. 1. DRRA system overview
A_exp(— At/T-), if At <O.

B. Spike-Timing-Dependent Plasticity (STDP) thread) implemented in software on the LEON3 processor.
STDP is a biological process that manipulated the strengthe configuration thread receives the information about the

of connections between various neurons in the brain. The cadpology and multiplexing technique employed and gensrate

nection strengths are adjusted depending on the relativedi the configware [13].

of a particular neuron’s output and input action potent{als

spikes). Further details about STDP can be found in [12]. —
1. SYSTEM OVERVIEW LEON3 |Configurati0n
mem‘orv

To evaluate experimentally efficiency of Spiking Neural 1

Networks (SNNs) on a CGRA, we have chosen the Dynam- AHB

ically Reconfigurable Resource Array (DRRA) Shami2012. —— Loader ——
Nevertheless, it seems that the results are essentiallicable computation memory
to most grid based CGRAs as well. DRRA is a CGRA layer layer

template that targets DSP applications. As depicted in Fig.
1, it is composed of three main components: (i) System
Controller, (ii) Storage layer (DiMArch), and (iii) Compatton
layer. Table | briefly describes the basic functionality leége
components. The system controller is the general managech_n‘
the system that performs functions like application magpin
power management, etc. For the context of this paper, itDRRA computational layer, shown in Fig. 3, performs
generates the configware for different neural con-conaesti COmputations on data. The computational layer of DRRA con-
and sends it to the computational layer. The storage layahs four elements: (i) register files (reg-files), (ii) pbable
feeds both the configware and data to the computational.layld@ta Path Units (DPUs), (iii) circuit switched interconteec
Because DRRA can host simultaneously multiple applicatio{SBs), and (iv) sequencers. The reg-files are used to store
for each application a separate partition can be created fgy the DPUs. DPUs are the main functional blocks that
the system controller in the DRRA storage and computatif¥¢form computations. SBs are the switches that provide
layers. Before explaining how neural networks are realizegifcuit switched inter-connectivity between different BR

Fig. 2. DRRA system Overview

DRRA Computation Layer

we will first detail the DRRA architecture. components. The sequencers serve as distributed confaurat
memory for DRRA. Each sequencer holds the configware that
A. System Controller corresponds to the functionality of reg-files, DPUs, and.SBs

In this paper, the system controller is used to generate thesequencer stores up to 64 36-bit instructions that detexmi
configware that determines the connectivity between differ the functionality of all other elements in its oveell. Where a
neurons. Fig. 2 illustrates the system level view of DRRAe Thcell consists of reg-file, DPU, SBs, and a sequencer, all having
configware is generated by a separate thread (called comégwhe same row and column number as a given cell.



commonly used DSP functions (FFT, FIR filter e.t.c.) is veritt
either in VESYLA (HLS tool for DRRA) and stored in an off-
line library. For each function, multiple versions, witHfdrent
degree of parallelism, are stored. The library, thus ctkate
: 1 profiled with frequencies and worst case time of each version
e To map an application, its (simulink type) representatisn i
fed to the compiler. The compiler, based on the available
functions (present in library) constructs the binary foe th
complete application (e.g. WLAN). Since the actual exeputi
C. DRRA Storage layer (DiMArch) times are unknown at comp_ile time, the compilgr sends all
~_ the versions (of each function), meeting deadlines, to the
To prevent memory bottlenecks, DRRA boosts a distributefntime configware memory. To reduce memory requirements
memory called DiMArch [14], [15]. DRRA was designed to, storing multiple versions, the compiler generates a -com
host multiple applications with potentially different merg to pact representation of these versions. Details of comioress
computational ratio. To efficiently host multiple applicats algorithm and how it is unraveled are given in [2]. The
with arbitrary memory to computational ratios, it allowscte- compact representation is unraveled (parallelized /&)

ate a separate memory partition for each application [14]. %ynamically by the runtime resource manager (running in
shown in Fig. 4, DiMArch is a 2-dimensional arraymemory | aon3 processor).

tiles. Depending on their function, the tiles are classified into
two types: (i) Configuration Tile (ConTile) and (ii) Storage

Fig. 3. DRRA computation Layer

Tile (STile). The memory tiles present in the row, adjacent Compiler[~Versions
to the DRRA computation layer, are called ConTiles. The — !
ConTiles manage all data transfers and contain five compo- Compile fime Sr':llﬂ'enuk J Ico_mﬂ
nents: (i) SRAM, to store data for computational layer, &in)

address generator to provide data from appropriate adgress :

(iii) a crossbar, to handle data transfers between tile3,afi Application teon3 H Configware
Instruction Switch (iSwitch), to handle the transfer of troh deadiines DVFS | |Parallelzel
instructions between tiles [16], and (v) a DiMArch sequence DRRA

to store the sequence in which data will be transferred to Runtime

the DRRA computational layer. The memory tiles present in

rows, nonadjacent to the DRRA computational layer, aresdall Fig. 5. DRRA programming flow

STiles. They are mainly meant for data storage and therefore

do not contain the DiMArch sequencer. IV. MODELLING SPIKING NEURAL NETWORKS ONDRRA

mmmm—————— @®-—-—-——--—— Table Il summarizes how various spiking neural network
o= e T iy e - components, described in Section Il-A, are implemented on
SRAM T SrAM o DRRA platform. To mimic the neuron functionality, we have

| - enhanced the functionality of the Data Path Unit (DPU)

other neurons, the DPU performs the computationtions on
the received data. Since the spiked neural networks require
— e L W T 3 = timing information, we have added a counter and a SNN unit
i (explained later in Section IV-B). To allow communications

: between neurons, we exploit the circuit network provided by

i DRRA, unchanged. Finally, since the spiked neural networks
:
i

i
1 ]
P
STile ® ® i _ : ) )
% i and the reg-files. Using the reg-file to receive data from
{ |
i

ConTile A

require point to point connectivity (while DRRA registerefl
have only two ports), we have used sequencers to implement
point to point communication between multiple neurons (the
architecture is discussed in detail in Section IV-A).

To Reg-Files To Reg-Files
Column 0 Column 1
TABLE Il
Fig. 4. DRRA storage Layer SUMMARY OF HOW VARIOUS NEURAL NETWORK COMPONENTS ARE
REALIZED
[ Neural network entity [ DRRA implementation |
D. DRRA programming flow [ Neuron/Synapse [ DPU + Regfile |

[ Inter neural communicationg Circuit switched interconnect+ sequencr

As shown in Figure 5, DRRA is programmed in two
phases (off-line and on-line) [2]. The configware (binamy) f



A. Inter Neural Communication

Sequencer

instructions
Neural networks require point to point communication | Connect port Atocell 1 N,
between multiple neurons. To implement these connections ConnectportBtocell2
on DRRA, we had to consider two architectural proper-ties: Read data celll ~~ 1 oycle
/

(i) every DRRA component has only two read/write ports
and (ii) a DRRA component can be directly connected to a
component at most three hops away. Since these architectura
characteristics were designed after a careful evaluation o

Read data cell 2

XOR celll and cell2

—1 cycle —2 cycles

Connect port A to cell 3

S~

Connect port B to cell 4

|_~1cycle

Read data cell3
Read data cell 4

area/power trade-off, we decided not modify them. The point
to point connectivity was realized by using time division

multiplexing. In the proposed approach a specific time sk w XOR cell3 and cell4
assigned to each pair of neurons. To allow a scalable salutio l
we have chosen a hierarchical clustered approach shown in L 1
Fig. 6.

S~
|_—1cycle

— 1 cycle —2 cycles

Fig. 7. Sequencer instructions to implement time divisioultiplexing

Input nodes

stored inN/}; index of a dedicated pre-synapse arrdyN],
where N is the number of neurons, (ii) the time when last
post-synaptic spike was transmittef,,.;, is retrieved, (iii)
the difference between the spike timeST = Tpre?Tpost.

is calculated, and (iv) the result calculated by Equatiors 2 i
stored in a weights array/ [V]. Wherer determines the time
intervals when changes of a weight occur aids constant

Fig. 6 (2) shows a cluster of 6 DRRA cells. In the cluster orfdat determine the maximal change. When the postsynaptic
of the cells is chosen as an intermediate node. The inteateedPKE: Spost, IS transmitted three sequentl?}i steps follow: (i)
node receives data from the 6 cells in the cluster (includidge SPIKe transmitting imel},;, is storedv;;; hi?1 index of
itself). To allow connections with 6 cells on a 2-port com? ded|cat§d feg'Stef- (ii) the difference betW_ee” the snmkes
ponent, we exploit time division multiplexing combined it AT = A[i]?B, s calculated fo_r each entry 'A_[N]’ an_d (i)
partial and dynamic reconfiguration. In the overall prodéss the result calculated by Equation 2 is stored in a weighesyarr
intermediate cell receives data from 2 cells at a time and thg‘/[N]'
shifts to the other cells. The process continues till theadat
from all the cells is received. Once every cluster has receiv 2) Pre/post-synapse spike realizatioffigures 8, 9, and
inputs, the intermediate nodes communicate with each otdét show how the spiking neural network was realized on a
serially to ensure point to point connectivity. Fig. 7 shaiws DRRA platform. The data path needed to process the pre/post-
instructions in DRRA sequencers (needed to implement tRnhaptic spikes is shown in Figures 8 and 9. We have used
time division multiplexing). The figure shows that 5 cycles a the reg-files to mimicA[N]. Since each reg-files is composed
needed to collect information from all the DRRA cells in th€f 64 registers, to realize a system greater than 64 neurons,
cluster. It should be noted that 2 additional cycles areirequ We have used DiMArch memory (described in Section IlI).
to reconfigure the circuit switched network. The inter aust Therefore, for connecting more than 64 neurons an additiona
communication takes two cycles for reconfiguration and #&yerhead of 8 cycles is incurred, to send and receive data
additional cycle to transmit data. from the DiMArch. To implement SNN, requires a divider
(see Equation 1) which was missing in the existing DRRA
implementation. To realize a divider, we considered two al-

1) Processing requirements formalizatiohVhen a signal ternatives: (i) to implement the divider using shift regist at
is received (or sent) by a neuron additional processing tise cost accuracy or (ii) to implement a divider in hardware.
required. The processing requirements are dependent on $lirece for the realtime robotics (targetted in this papegesp
whether a signal is received (called pre-synapse spikeaonst and power (per computation) are far more significant than
mitted also (post- synapse spike). In this section, we wil f silicon efficiency, we opted for a dedicated double precisio
mulate the processing requirements of each spike separatibating point divider (shown in STDP block Figure 8) to allow
To formulate processing requirements of pre-synapse sieike quick convergence at low power. In addition, we implemented
Spre b€ the received pre-synapse spike received by neiyjon counters that allowed to transmit the spikes in terms ofithe t
from a neuronV;»;. Upon occurrence aof,,,.., four operations stamps. Finally, the state machine that realizes the séiglien
are performed sequentially: (i) the spike arrival tirfig,., is steps of pre/post synaptic spikes is implemented.

node

(a) Cluster of DRRA
cells

(b) Inter-cluster
connections

Fig. 6. Inter neural communication realization

B. Neuron/Synapses Realization
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V. EXPERIMENTAL RESULTS

To investigate the efficacy of the proposed approach, we

different number of neurons as shown in Fig. 11. As expected,
a completely serial implementation (cluster size=1) fof 20
neurons required maximum latency of 336000 clock cycles
compared to latency with cluster size=5 (that is 67200 fdr 20
neurons). Considering that DRRA operates at a frequency of
400 MHz, the connectivity for 200 neurons can be achieved
in 1.68 msec. Extrapolating the results a connectivity of up
to 1000 neurons can be achieved in 4.4 msec. To evaluate
additional cells needed for parallel implementation, we an
alyzed the additional intermediate cells needed for déffier
cluster sizes as shown in Fig. 12. From the Fig. 12, it can
be concluded that the minimum area consumption is observed
for cluster sizel running 20 parallel neurons and maximum
area consumption is observed at cluster size 5 running 200
neurons.

—#—cluster size=1—#—cluster size=2 ——cluster size=3

——cluster size=4 ~®—cluster size=5
400000
350000
300000 /

g 250000

“S 200000
150000
100000

50000 / ——t
0 | p——————

20 40 60 80 100 120 140 160 180 200

Parallel neurons

Fig. 11. Parallel neurons computational latency

implemented SNNs on the enhanced DRRA platform. Specif-

ically we evaluated the scalability of the proposed appnoac

and its overheads.

A. Scalability analysis

To determine the scalability of implementing massively
parallel neural networks, we measured the cycles needed
to realize point to point connectivity using time division

—m—cluster size=1——cluster size=2 ——cluster size=3

——cluster size=4 ~®—cluster size=5

N
&
3

~
S
3

._.
Q
3

multiplexing. We mapped the solution using cluster of difet
sizes. A cluster is defined as the number of neurons that can
communicate directly with each other, in parallel (usingcp
division multiplexing). Since DRRA only permits up to 3 hop
connectivity, the maximum cluster size was limited to 5<ell
The scalability was analyzed by calculating the latency for

Intermediate DRRA Cells
g
r1 \\ \

@
S

[T
g

o

20 40 60 80 100 120 140 160 180 200
Parallel Neurons

Fig. 12. Cells consumption

Post _synaptic

Fig. 10. State machine for pre/post-synaptic spike amalysi

Pre_synaptic
spi ke

V1. OVERHEAD ANALYSIS

To estimate the area and power overhead of implementing
SNNs, we synthesized the DRRA fabric with enhanced hard-
ware support for 65 nm technology at 400 MHz frequency
using Synopsys Design Compiler. Fig. 13 and Fig. 14 illustra
the total area and power usage of the design respectivedy. Th
maximum area utilization is for DRRA cells and the area
overhead of the system is about 39 % (divider, datapath, and
state machine). Similarly, the maximum power consumption
is achieved by the DRRA cells and the power consumption
for divider, datapath, and state machine is 27 % of the oleral
design.
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Fig. 13. Area consumption of the design.

Power breakdown [mW]

®DRRA cell  mDivider and datapath statemachine

Fig. 14. Power consumption of the design.

VIl. CONCLUSION
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