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Abstract—This paper presents the architecture and implemen-
tation of neural networks on a Coarse-Grain Reconfigurable
Architecture (CGRA). In particular, we propose a mapping of
Spiking Neural Networks (SNNs) on a CGRA, that guarantees
better performance in terms of throughput, latency, area, and
power consumption (compared to existing FPGA based imple-
mentations). In our design we exploit various CGRA resources
to mimic a complex network of neurons and synapses. To test
the effectiveness of our approach, we have used Dynamically
Reconfigurable Resource Array (DRRA).

I. I NTRODUCTION

Today, neural networks becoming an increasingly popular
technique to realize learning robotics. Use of neural networks
in robotics requires fast and efficient implementation plat-
forms. Recently, the increasing speed and high performance
requirements, coupled with the demands for flexibility and
low non-recurring engineering costs, have made reconfig-
urable hardware a very popular implementation technology
for neural networks [1]. Today reconfigurable architectures
enable partial and dynamic runtime self-reconfiguration [2].
This feature allows the substitution of neural network on a
hardware design implemented on this reconfigurable hardware,
and therefore, a single device can be adapted to implement
various functionalities by simply uploading a new configura-
tion based on neural network application. The reconfigurable
architectures can be classified depending on their granularity,
i.e., the number of bits which can be explicitly manipulated
by the programmer. Coarse-Grained Reconfigurable Architec-
tures (CGRAs) provide operator level configurable functional
blocks, word level datapaths, and powerful and very area-
efficient datapath routing switches. Compared to fine-grained
architectures (like FPGAs) CGRAs enjoy massive reduction
of configuration memory and configuration time (two or more
orders of magnitude [3]) as well as considerable reduction in
routing and placement allocation. All this also results in a
significant reduction of the overall area (from 66 % to 99.06
% [4]) and energy consumed per computation (from 88 % to
98 % [4]), though at the cost of a loss in flexibility compared
to bit-level operations. Therefore, CGRAs have been a subject
of intensive research since the last decade [4].

Most of the existing works that attempt to speed up the
neural network algorithm employ FPGAs [5], [6]. They speed
up computations by exploiting the parallel processing offered
by the FPGAs. However, the FPGAs require fine granular
connectivity that is in efficient to handle the complex inter-
connections required by the neural networks [7]. Compared to
FPGAs, network-on-chip (NoC) simplify the connectivity [7]

thereby enhance scalability. However, the NoC based solutions
(using processor with every node) are inefficient and require
complex switches. Therefore, while NoC based solutions pro-
vide high scalability, they are unable to provide the parallel
processing high speeds offered by the FPGA solutions. In this
paper we explore the feasibility of implementing the neural
networks on a CGRA. The proposed solution provides the
parallel processing of FPGA based implementations with the
scalability similar to generic NoCs. Specifically, we consider
a phenomenon known as Spike-Timing-Dependent Plasticity
(STDP) [8]. To evaluate experimentally the efficiency of the
proposed solution on a CGRA, we have chosen the Dynami-
cally Reconfigurable Resource Array (DRRA) [?Shami2012].
Nevertheless, the results obtained in this paper should essen-
tially be applicable to most grid based CGRAs as well.

This paper has two major contributions:
1) We present architecture and implementation to realize

a spiked neural networks on a coarse grained reconfig-
urable array (CGRA);

2) We analyze the scalability and overheads of the proposed
technique, on an actual CGRA called Dynamically Re-
configurable Resource Array (DRRA).

II. PRELIMINARIES

In this paper we will attempt to implement phenomena
known as Spiking Timing Dependent Plasticity (STDP) using
Spiking Neural Networks (SNN). In order to verify our results
the CGRA platform we used named Dynamically Reconfig-
urable Resource Array (DRRA). The computational systems
based on SNN is getting critical requires improved and faster
computations. The CGRA becomes a promising solution for
providing a scalable and robust interconnection fabric. There-
fore before explaining the hardware implementation we will
briefly describe the SNN and the STDP functionality.

A. Spiking Neural Network (SNN)

Spiking Neural Networks is the latest generation of neural
networks models [9]. Spiking neurons emulates the behavior
of biological neurons that communicate with electrical pulses
or spikes. The spiking neuron is modeled by a differential
equation that traces the changes of the potential of a neuron
over time [10]. The simplest and the most widely used Leaky
Integrate and Fire model is presented in Equation 1. The
potentialV integrates input spikesI and leaks over time with
−bV component. Coefficienta determines equilibrium point
and coefficientb the speed of leakage. When the threshold
potential is reached a neuron output a spike and its potential



is reset. The neurons are connected in one-to-many fashion.
Each time a neuron produces a spike, it should be delivered to
all the connected neurons. Each connection between neurons
has a weight that defines the input to the neuron model from
a particular spike. Spikes carry only events, synapses are
responsible for generating weighted inputs and for learning.
Learning is performed by adjusting synaptic weights. The
most widely used learning methods for SNN are Hebb’s based
rules. Hebb postulated that when one neuron assists in firing
another, the synaptic weight between them is strengthened
[11]. One of the most widely used models of Hebbian learning
is exponential STDP rule shown in Equation 2 [10]. This rule
increases a synaptic weight if the time difference between an
output (post- synaptic) and an input (pre- synaptic) spikes△t
is positive (i.e. when a pre- synaptic spike arrives before a
post- synaptic one) and vice versa.

dv/dt = I + a− bV (1)

{

A+exp(−△ t/τ+), if △t > 0.

A
−
exp(−△ t/τ

−
), if △t < 0.

(2)

B. Spike-Timing-Dependent Plasticity (STDP)

STDP is a biological process that manipulated the strength
of connections between various neurons in the brain. The con-
nection strengths are adjusted depending on the relative timing
of a particular neuron’s output and input action potentials(or
spikes). Further details about STDP can be found in [12].

III. SYSTEM OVERVIEW

To evaluate experimentally efficiency of Spiking Neural
Networks (SNNs) on a CGRA, we have chosen the Dynam-
ically Reconfigurable Resource Array (DRRA) Shami2012.
Nevertheless, it seems that the results are essentially applicable
to most grid based CGRAs as well. DRRA is a CGRA
template that targets DSP applications. As depicted in Fig.
1, it is composed of three main components: (i) System
Controller, (ii) Storage layer (DiMArch), and (iii) Computation
layer. Table I briefly describes the basic functionality of these
components. The system controller is the general manager of
the system that performs functions like application mapping,
power management, etc. For the context of this paper, it
generates the configware for different neural con-connections
and sends it to the computational layer. The storage layer
feeds both the configware and data to the computational layer.
Because DRRA can host simultaneously multiple applications,
for each application a separate partition can be created by
the system controller in the DRRA storage and computation
layers. Before explaining how neural networks are realized,
we will first detail the DRRA architecture.

A. System Controller

In this paper, the system controller is used to generate the
configware that determines the connectivity between different
neurons. Fig. 2 illustrates the system level view of DRRA. The
configware is generated by a separate thread (called configware

TABLE I
LOCAL CONTROLLER FUNCTIONALITY

Component Functionality

DRRA system controller

(i) Send configware to DRRA
computation layer
(ii) Create memory partitions for each
application

DRRA storage layer Store date for DRRA computation layer
DRRA computation layer Perform computations

System 
controller

DRRA storage
layer

DRRA computation
layer

App1 App2 App3
Memory
elements

Cells

Fig. 1. DRRA system overview

thread) implemented in software on the LEON3 processor.
The configuration thread receives the information about the
topology and multiplexing technique employed and generates
the configware [13].

LEON3
Global

configuration
memory
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DRRA
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Fig. 2. DRRA system Overview

B. DRRA Computation Layer

DRRA computational layer, shown in Fig. 3, performs
computations on data. The computational layer of DRRA con-
tains four elements: (i) register files (reg-files), (ii) morphable
Data Path Units (DPUs), (iii) circuit switched interconnects
(SBs), and (iv) sequencers. The reg-files are used to store
for the DPUs. DPUs are the main functional blocks that
perform computations. SBs are the switches that provide
circuit switched inter-connectivity between different DRRA
components. The sequencers serve as distributed configuration
memory for DRRA. Each sequencer holds the configware that
corresponds to the functionality of reg-files, DPUs, and SBs.
A sequencer stores up to 64 36-bit instructions that determine
the functionality of all other elements in its owncell. Where a
cell consists of reg-file, DPU, SBs, and a sequencer, all having
the same row and column number as a given cell.
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C. DRRA Storage layer (DiMArch)

To prevent memory bottlenecks, DRRA boosts a distributed
memory called DiMArch [14], [15]. DRRA was designed to
host multiple applications with potentially different memory to
computational ratio. To efficiently host multiple applications
with arbitrary memory to computational ratios, it allows tocre-
ate a separate memory partition for each application [14]. As
shown in Fig. 4, DiMArch is a 2-dimensional array ofmemory
tiles. Depending on their function, the tiles are classified into
two types: (i) Configuration Tile (ConTile) and (ii) Storage
Tile (STile). The memory tiles present in the row, adjacent
to the DRRA computation layer, are called ConTiles. The
ConTiles manage all data transfers and contain five compo-
nents: (i) SRAM, to store data for computational layer, (ii)an
address generator to provide data from appropriate addresses,
(iii) a crossbar, to handle data transfers between tiles, (iv) an
Instruction Switch (iSwitch), to handle the transfer of control
instructions between tiles [16], and (v) a DiMArch sequencer,
to store the sequence in which data will be transferred to
the DRRA computational layer. The memory tiles present in
rows, nonadjacent to the DRRA computational layer, are called
STiles. They are mainly meant for data storage and therefore
do not contain the DiMArch sequencer.
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Fig. 4. DRRA storage Layer

D. DRRA programming flow

As shown in Figure 5, DRRA is programmed in two
phases (off-line and on-line) [2]. The configware (binary) for

commonly used DSP functions (FFT, FIR filter e.t.c.) is written
either in VESYLA (HLS tool for DRRA) and stored in an off-
line library. For each function, multiple versions, with different
degree of parallelism, are stored. The library, thus created, is
profiled with frequencies and worst case time of each version.
To map an application, its (simulink type) representation is
fed to the compiler. The compiler, based on the available
functions (present in library) constructs the binary for the
complete application (e.g. WLAN). Since the actual execution
times are unknown at compile time, the compiler sends all
the versions (of each function), meeting deadlines, to the
runtime configware memory. To reduce memory requirements
for storing multiple versions, the compiler generates a com-
pact representation of these versions. Details of compression
algorithm and how it is unraveled are given in [2]. The
compact representation is unraveled (parallelized/serialized)
dynamically by the runtime resource manager (running in
Leon3 processor).
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Fig. 5. DRRA programming flow

IV. M ODELLING SPIKING NEURAL NETWORKS ONDRRA

Table II summarizes how various spiking neural network
components, described in Section II-A, are implemented on
DRRA platform. To mimic the neuron functionality, we have
enhanced the functionality of the Data Path Unit (DPU)
and the reg-files. Using the reg-file to receive data from
other neurons, the DPU performs the computationtions on
the received data. Since the spiked neural networks require
timing information, we have added a counter and a SNN unit
(explained later in Section IV-B). To allow communications
between neurons, we exploit the circuit network provided by
DRRA, unchanged. Finally, since the spiked neural networks
require point to point connectivity (while DRRA register files
have only two ports), we have used sequencers to implement
point to point communication between multiple neurons (the
architecture is discussed in detail in Section IV-A).

TABLE II
SUMMARY OF HOW VARIOUS NEURAL NETWORK COMPONENTS ARE

REALIZED

Neural network entity DRRA implementation

Neuron/Synapse DPU + Regfile
Inter neural communications Circuit switched interconnect+ sequencer



A. Inter Neural Communication

Neural networks require point to point communication
between multiple neurons. To implement these connections
on DRRA, we had to consider two architectural proper-ties:
(i) every DRRA component has only two read/write ports
and (ii) a DRRA component can be directly connected to a
component at most three hops away. Since these architectural
characteristics were designed after a careful evaluation of
area/power trade-off, we decided not modify them. The point
to point connectivity was realized by using time division
multiplexing. In the proposed approach a specific time slot was
assigned to each pair of neurons. To allow a scalable solution,
we have chosen a hierarchical clustered approach shown in
Fig. 6.
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Fig. 6. Inter neural communication realization

Fig. 6 (a) shows a cluster of 6 DRRA cells. In the cluster one
of the cells is chosen as an intermediate node. The intermediate
node receives data from the 6 cells in the cluster (including
itself). To allow connections with 6 cells on a 2-port com-
ponent, we exploit time division multiplexing combined with
partial and dynamic reconfiguration. In the overall processthe
intermediate cell receives data from 2 cells at a time and then
shifts to the other cells. The process continues till the data
from all the cells is received. Once every cluster has received
inputs, the intermediate nodes communicate with each other
serially to ensure point to point connectivity. Fig. 7 showsthe
instructions in DRRA sequencers (needed to implement the
time division multiplexing). The figure shows that 5 cycles are
needed to collect information from all the DRRA cells in the
cluster. It should be noted that 2 additional cycles are required
to reconfigure the circuit switched network. The inter cluster
communication takes two cycles for reconfiguration and an
additional cycle to transmit data.

B. Neuron/Synapses Realization

1) Processing requirements formalization:When a signal
is received (or sent) by a neuron additional processing is
required. The processing requirements are dependent on the
whether a signal is received (called pre-synapse spike) or trans-
mitted also (post- synapse spike). In this section, we will for-
mulate the processing requirements of each spike separately.
To formulate processing requirements of pre-synapse spike, let
Spre be the received pre-synapse spike received by neuronNi

from a neuronNi?1. Upon occurrence ofSpre, four operations
are performed sequentially: (i) the spike arrival time,Tpre, is
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Read data cell 4
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Fig. 7. Sequencer instructions to implement time division multiplexing

stored inN th
i?1 index of a dedicated pre-synapse array,A[N ],

whereN is the number of neurons, (ii) the time when last
post-synaptic spike was transmitted,Tpost, is retrieved, (iii)
the difference between the spike times,△T = Tpre?Tpost,
is calculated, and (iv) the result calculated by Equation 2 is
stored in a weights arrayW [N ]. Whereτ determines the time
intervals when changes of a weight occur andA is constant
that determine the maximal change. When the postsynaptic
spike,Spost, is transmitted three sequential steps follow: (i)
the spike transmitting time,Tpost, is storedN th

i?1hi?1 index of
a dedicated register. (ii) the difference between the spiketimes,
△T = A[i]?B, is calculated for each entry inA[N ], and (iii)
the result calculated by Equation 2 is stored in a weights array
W [N ].

2) Pre/post-synapse spike realization:Figures 8, 9, and
10 show how the spiking neural network was realized on a
DRRA platform. The data path needed to process the pre/post-
synaptic spikes is shown in Figures 8 and 9. We have used
the reg-files to mimicA[N ]. Since each reg-files is composed
of 64 registers, to realize a system greater than 64 neurons,
we have used DiMArch memory (described in Section III).
Therefore, for connecting more than 64 neurons an additional
overhead of 8 cycles is incurred, to send and receive data
from the DiMArch. To implement SNN, requires a divider
(see Equation 1) which was missing in the existing DRRA
implementation. To realize a divider, we considered two al-
ternatives: (i) to implement the divider using shift registers at
the cost accuracy or (ii) to implement a divider in hardware.
Since for the realtime robotics (targetted in this paper) speed
and power (per computation) are far more significant than
silicon efficiency, we opted for a dedicated double precision
floating point divider (shown in STDP block Figure 8) to allow
quick convergence at low power. In addition, we implemented
counters that allowed to transmit the spikes in terms of the time
stamps. Finally, the state machine that realizes the sequential
steps of pre/post synaptic spikes is implemented.
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V. EXPERIMENTAL RESULTS

To investigate the efficacy of the proposed approach, we
implemented SNNs on the enhanced DRRA platform. Specif-
ically we evaluated the scalability of the proposed approach
and its overheads.

A. Scalability analysis

To determine the scalability of implementing massively
parallel neural networks, we measured the cycles needed
to realize point to point connectivity using time division
multiplexing. We mapped the solution using cluster of different
sizes. A cluster is defined as the number of neurons that can
communicate directly with each other, in parallel (using space
division multiplexing). Since DRRA only permits up to 3 hop
connectivity, the maximum cluster size was limited to 5 cells.
The scalability was analyzed by calculating the latency for
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Fig. 10. State machine for pre/post-synaptic spike analysis

different number of neurons as shown in Fig. 11. As expected,
a completely serial implementation (cluster size=1) for 200
neurons required maximum latency of 336000 clock cycles
compared to latency with cluster size=5 (that is 67200 for 200
neurons). Considering that DRRA operates at a frequency of
400 MHz, the connectivity for 200 neurons can be achieved
in 1.68 msec. Extrapolating the results a connectivity of up
to 1000 neurons can be achieved in 4.4 msec. To evaluate
additional cells needed for parallel implementation, we an-
alyzed the additional intermediate cells needed for different
cluster sizes as shown in Fig. 12. From the Fig. 12, it can
be concluded that the minimum area consumption is observed
for cluster size1 running 20 parallel neurons and maximum
area consumption is observed at cluster size 5 running 200
neurons.

Fig. 11. Parallel neurons computational latency

Fig. 12. Cells consumption

VI. OVERHEAD ANALYSIS

To estimate the area and power overhead of implementing
SNNs, we synthesized the DRRA fabric with enhanced hard-
ware support for 65 nm technology at 400 MHz frequency
using Synopsys Design Compiler. Fig. 13 and Fig. 14 illustrate
the total area and power usage of the design respectively. The
maximum area utilization is for DRRA cells and the area
overhead of the system is about 39 % (divider, datapath, and
state machine). Similarly, the maximum power consumption
is achieved by the DRRA cells and the power consumption
for divider, datapath, and state machine is 27 % of the overall
design.



Fig. 13. Area consumption of the design.

Fig. 14. Power consumption of the design.

VII. C ONCLUSION

In this paper, we have presented the novel idea about the
integration of neurons on DRRA platform based on CGRA.
We have chosen CGRA as a implementation plat-form because
of its potential to dominate its counterpart FPGA in near fu-
ture. An architecture is presented here is for high performance
implementation of Spiked Neural Networks on a CGRA (so
far implemented only on FPGAs, ASICs or software) imple-
mentation on CGRA leads towards the novelty of this work;
we also had exploited the redundancies imposed by the SNNs
are quantified on a sample CGRA, called Dynamically Recon-
figurable Resource Array (DRRA). The basic idea and theme
of this paper is to present the architecture and implementation
of neurons on CGRA platform in order to accomplished better
performance to achieved higher computational power.
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